32 research outputs found

    IGF-IR cooperates with ERα to inhibit breast cancer cell aggressiveness by regulating the expression and localisation of ECM molecules

    Get PDF
    IGF-IR is highly associated with the behaviour of breast cancer cells. In ERα-positive breast cancer, IGF-IR is present at high levels. In clinical practice, prolonged treatment with anti-estrogen agents results in resistance to the therapy with activation of alternative signaling pathways. Receptor Tyrosine Kinases, and especially IGF-IR, have crucial roles in these processes. Here, we report a nodal role of IGF-IR in the regulation of ERα-positive breast cancer cell aggressiveness and the regulation of expression levels of several extracellular matrix molecules. In particular, activation of IGF-IR, but not EGFR, in MCF-7 breast cancer cells results in the reduction of specific matrix metalloproteinases and their inhibitors. In contrast, IGF-IR inhibition leads to the depletion by endocytosis of syndecan-4. Global important changes in cell adhesion receptors, which include integrins and syndecan-4 triggered by IGF-IR inhibition, regulate adhesion and invasion. Cell function assays that were performed in MCF-7 cells as well as their ERα-suppressed counterparts indicate that ER status is a major determinant of IGF-IR regulatory role on cell adhesion and invasion. The strong inhibitory role of IGF-IR on breast cancer cells aggressiveness for which E2-ERα signaling pathway seems to be essential, highlights IGF-IR as a major molecular target for novel therapeutic strategies

    Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone

    Get PDF
    PRDM family members are transcriptional regulators involved in tissue specific differentiation. PRDM5 has been reported to predominantly repress transcription, but a characterization of its molecular functions in a relevant biological context is lacking. We demonstrate here that Prdm5 is highly expressed in developing bones; and, by genome-wide mapping of Prdm5 occupancy in pre-osteoblastic cells, we uncover a novel and unique role for Prdm5 in targeting all mouse collagen genes as well as several SLRP proteoglycan genes. In particular, we show that Prdm5 controls both Collagen I transcription and fibrillogenesis by binding inside the Col1a1 gene body and maintaining RNA polymerase II occupancy. In vivo, Prdm5 loss results in delayed ossification involving a pronounced impairment in the assembly of fibrillar collagens. Collectively, our results define a novel role for Prdm5 in sustaining the transcriptional program necessary to the proper assembly of osteoblastic extracellular matrix

    Heparan sulfate biosynthesis:methods for investigation of the heparanosome

    Get PDF
    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has not been carried out in a detailed way using high-resolution microscopy. We have begun this process, using well-known markers for the various Golgi compartments, coupled with the use of characterized antibodies and cDNA expression. Laser scanning confocal microscopy coupled with line scanning provides high-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all the enzymes are clustered in a multimolecular complex or are distributed through the various compartments of the Golgi apparatus

    Utility of CK7 and CK20 in the Immunohistochemical Detection of Simultaneous Colon and Breast Carcinoma in a Pleural Effusion: a case report and supporting survey of archival material.

    No full text
    We present a case of synchronous breast and colon carcinoma in a pleural effusion, to our knowledge the first such reported case in the English-language literature. The patient was a 55-yr-old white female with known metastatic breast and colon carcinoma who developed a malignant pleural effusion which demonstrated two strikingly different populations of malignant cells by immunohistochemical study of cell block material. One cell population demonstrated a cytokeratin (CK)7+/CK20-/ER+ phenotype, while the other demonstrated a CK7-/CK20+/ER- phenotype, consistent with breast and colon origin, respectively. An immunohistochemical survey of archival breast and colon primary and metastatic carcinomas confirmed the established CK7+/CK20- phenotype of breast and CK7-/CK20+ phenotype of colon primary carcinomas, and the maintenance of this phenotype in metastases thereof. A survey of benign and malignant mesothelial lesions confirmed the absence of staining for estrogen receptor, but showed 6/10 cases weakly positive for CK20, which has not been described in other published series. This unusual case graphically illustrates the utility of cytokeratin subset immunohistochemistry in effusion cytology
    corecore