26 research outputs found

    The Role of Lower Leg Muscle Activity in Blood Pressure Maintenance of Older Adults

    Get PDF
    Purpose. Age-associated muscle weakness, postural instability, and orthostatic hypotension have been identified as contributing factors to falls , but the relationships among them are not clear. Therefore, the purpose of this study, a two-way factorial design, was to investigate the differences in lower extremity (LE) muscle activity, blood pressure (BP), and heart rate (HR) between young and older individuals in an upright position. Methods. Ten young males (20-24 yrs.) and 10 older males (65-82 yrs.) stood for 15 minutes while BP, HR, and LE electromyography (EMG) were recorded at one minute intervals . A two-way ANOVA was used for data analysis , p=.05. Results. Mean arterial pressure of both groups significantly increased from supine values within one minute of standing (young = 86.5±1.68 to 96.9±3.16 mmHg, old = 100.3±4.42 to 114.0±5.40 mmHg). BP variables remained elevated during the 15 minutes of standing despite a significantly attenuated HR response in the older group (young = 85±4.51 bpm, old = 73±3.98 bpm). Standing EMG activity of the older group was significantly greater than the young group. Conclusion. This study suggests that increased LE muscle activity may play a role in the ability of older individuals to maintain BP in the standing position

    Negative flat band magnetism in a spin-orbit coupled correlated kagome magnet

    Full text link
    It has long been speculated that electronic flat band systems can be a fertile ground for hosting novel emergent phenomena including unconventional magnetism and superconductivity. Although flat bands are known to exist in a few systems such as heavy fermion materials and twisted bilayer graphene, their microscopic roles and underlying mechanisms in generating emergent behavior remain elusive. Here we use scanning tunneling microscopy to elucidate the atomically resolved electronic states and their magnetic response in the kagome magnet Co3Sn2S2. We observe a pronounced peak at the Fermi level, which is identified to arise from the kinetically frustrated kagome flat band. Increasing magnetic field up to +-8T, this state exhibits an anomalous magnetization-polarized Zeeman shift, dominated by an orbital moment in opposite to the field direction. Such negative magnetism can be understood as spin-orbit coupling induced quantum phase effects tied to non-trivial flat band systems. We image the flat band peak, resolve the associated negative magnetism, and provide its connection to the Berry curvature field, showing that Co3Sn2S2 is a rare example of kagome magnet where the low energy physics can be dominated by the spin-orbit coupled flat band. Our methodology of probing band-resolved ordering phenomena such as spin-orbit magnetism can also be applied in future experiments to elucidate other exotic phenomena including flat band superconductivity and anomalous quantum transport.Comment: Nature Physics onlin

    Imaging real-space flat band localization in kagome magnet FeSn

    Full text link
    Kagome lattices host flat bands due to their frustrated lattice geometry, which leads to destructive quantum interference of electron wave functions. Here, we report imaging of the kagome flat band localization in real-space using scanning tunneling microscopy. We identify both the Fe3Sn kagome lattice layer and the Sn2 honeycomb layer with atomic resolution in kagome antiferromagnet FeSn. On the Fe3Sn lattice, at the flat band energy determined by the angle resolved photoemission spectroscopy, tunneling spectroscopy detects an unusual state localized uniquely at the Fe kagome lattice network. We further show that the vectorial in-plane magnetic field manipulates the spatial anisotropy of the localization state within each kagome unit cell. Our results are consistent with the real-space flat band localization in the magnetic kagome lattice. We further discuss the magnetic tuning of flat band localization under the spin-orbit coupled magnetic kagome lattice model.Comment: To appear in Communications Material

    Observation of sixfold degenerate fermions in PdSb2_2

    Get PDF
    Three types of fermions have been extensively studied in topological quantum materials: Dirac, Weyl, and Majorana fermions. Beyond the fundamental fermions in high energy physics, exotic fermions are allowed in condensed matter systems residing in three-, six- or eightfold degenerate band crossings. Here, we use angle-resolved photoemission spectroscopy to directly visualize three-doubly-degenerate bands in PdSb2_2. The ultrahigh energy resolution we are able to achieve allows for the confirmation of all the sixfold degenerate bands at the R point, in remarkable consistency with first-principles calculations. Moreover, we find that this sixfold degenerate crossing has quadratic dispersion as predicted by theory. Finally, we compare sixfold degenerate fermions with previously confirmed fermions to demonstrate the importance of this work: our study indicates a topological fermion beyond the constraints of high energy physics

    Fermion-boson many-body interplay in a frustrated kagome paramagnet

    Full text link
    Kagome-net, appearing in areas of fundamental physics, materials, photonic and cold-atom systems, hosts frustrated fermionic and bosonic excitations. However, it is extremely rare to find a system to study both fermionic and bosonic modes to gain insights into their many-body interplay. Here we use state-of-the-art scanning tunneling microscopy and spectroscopy to discover unusual electronic coupling to flat-band phonons in a layered kagome paramagnet. Our results reveal the kagome structure with unprecedented atomic resolution and observe the striking bosonic mode interacting with dispersive kagome electrons near the Fermi surface. At this mode energy, the fermionic quasi-particle dispersion exhibits a pronounced renormalization, signaling a giant coupling to bosons. Through a combination of self-energy analysis, first-principles calculation, and a lattice vibration model, we present evidence that this mode arises from the geometrically frustrated phonon flat-band, which is the lattice analog of kagome electron flat-band. Our findings provide the first example of kagome bosonic mode (flat-band phonon) in electronic excitations and its strong interaction with fermionic degrees of freedom in kagome-net materials.Comment: To appear in Nature Communications (2020

    Discovery of unconventional chiral charge order in kagome superconductor KV3Sb5

    Full text link
    Intertwining quantum order and nontrivial topology is at the frontier of condensed matter physics. A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for achieving the quantum anomalous Hall effect in topological materials and for the hidden phase in cuprate high-temperature superconductors. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy (STM) to discover an unconventional charge order in a kagome material KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2x2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2x2 charge modulation exhibits an intensity reversal in real-space, signaling charge ordering. At impurity-pinning free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral CDW in the frustrated kagome lattice, which can not only lead to large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity.Comment: Orbital magnetism calculation adde
    corecore