3 research outputs found
Early Universe Dynamics in Semi-Classical Loop Quantum Cosmology
Within the framework of loop quantum cosmology, there exists a semi-classical
regime where spacetime may be approximated in terms of a continuous manifold,
but where the standard Friedmann equations of classical Einstein gravity
receive non-perturbative quantum corrections. An approximate, analytical
approach to studying cosmic dynamics in this regime is developed for both
spatially flat and positively-curved isotropic universes sourced by a
self-interacting scalar field. In the former case, a direct correspondence
between the classical and semi-classical field equations can be established
together with a scale factor duality that directly relates different expanding
and contracting universes. Some examples of non-singular, bouncing cosmologies
are presented together with a scaling, power-law solution.Comment: 14 pages, In Press, JCA
Effective State Metamorphosis in Semi-Classical Loop Quantum Cosmology
Modification to the behavior of geometrical density at short scales is a key
result of loop quantum cosmology, responsible for an interesting phenomenology
in the very early universe. We demonstrate the way matter with arbitrary scale
factor dependence in Hamiltonian incorporates this change in its effective
dynamics in the loop modified phase. For generic matter, the equation of state
starts varying near a critical scale factor, becomes negative below it and
violates strong energy condition. This opens a new avenue to generalize various
phenomenological applications in loop quantum cosmology. We show that different
ways to define energy density may yield radically different results, especially
for the case corresponding to classical dust. We also discuss implications for
frequency dispersion induced by modification to geometric density at small
scales.Comment: Revised version; includes expanded discussion of natural
trans-Planckian modifications to frequency dispersion and robustness to
quantization ambiguities. To appear in Class. Quant. Gra
On Energy Conditions and Stability in Effective Loop Quantum Cosmology
In isotropic loop quantum cosmology, non-perturbatively modified dynamics of
a minimally coupled scalar field violates weak, strong and dominant energy
conditions when they are stated in terms of equation of state parameter. The
violation of strong energy condition helps to have non-singular evolution by
evading singularity theorems thus leading to a generic inflationary phase.
However, the violation of weak and dominant energy conditions raises concern,
as in general relativity these conditions ensure causality of the system and
stability of vacuum via Hawking-Ellis conservation theorem. It is shown here
that the non-perturbatively modified kinetic term contributes negative pressure
but positive energy density. This crucial feature leads to violation of energy
conditions but ensures positivity of energy density, as scalar matter
Hamiltonian remains bounded from below. It is also shown that the modified
dynamics restricts group velocity for inhomogeneous modes to remain sub-luminal
thus ensuring causal propagation across spatial distances.Comment: 29 pages, revtex4; few clarifications, references added, to appear in
CQ