In isotropic loop quantum cosmology, non-perturbatively modified dynamics of
a minimally coupled scalar field violates weak, strong and dominant energy
conditions when they are stated in terms of equation of state parameter. The
violation of strong energy condition helps to have non-singular evolution by
evading singularity theorems thus leading to a generic inflationary phase.
However, the violation of weak and dominant energy conditions raises concern,
as in general relativity these conditions ensure causality of the system and
stability of vacuum via Hawking-Ellis conservation theorem. It is shown here
that the non-perturbatively modified kinetic term contributes negative pressure
but positive energy density. This crucial feature leads to violation of energy
conditions but ensures positivity of energy density, as scalar matter
Hamiltonian remains bounded from below. It is also shown that the modified
dynamics restricts group velocity for inhomogeneous modes to remain sub-luminal
thus ensuring causal propagation across spatial distances.Comment: 29 pages, revtex4; few clarifications, references added, to appear in
CQ