104 research outputs found

    Executive Functions of Six-Year-Old Boys with Normal Birth Weight and Gestational Age

    Get PDF
    Impaired fetal development, reflected by low birth weight or prematurity, predicts an increased risk for psychopathology, especially attention deficit hyperactivity disorder (ADHD). Such effects cut across the normal range of birth weight and gestation. Despite the strength of existing epidemiological data, cognitive pathways that link fetal development to mental health are largely unknown. In this study we examined the relation of birth weight (>2500 g) and gestational age (37–41 weeks) within the normal range with specific executive functions in 195 Singaporean six-year-old boys of Chinese ethnicity. Birth weight adjusted for gestational age was used as indicator of fetal growth while gestational age was indicative of fetal maturity. Linear regression revealed that increased fetal growth within the normal range is associated with an improved ability to learn rules during the intra/extra-dimensional shift task and to retain visual information for short period of time during the delayed matching to sample task. Moreover, faster and consistent reaction times during the stop-signal task were observed among boys born at term, but with higher gestational age. Hence, even among boys born at term with normal birth weight, variations in fetal growth and maturity showed distinct effects on specific executive functions

    The Fat Mass and Obesity Associated Gene FTO Functions in the Brain to Regulate Postnatal Growth in Mice

    Get PDF
    FTO (fat mass and obesity associated) was identified as an obesity-susceptibility gene by several independent large-scale genome association studies. A cluster of SNPs (single nucleotide polymorphism) located in the first intron of FTO was found to be significantly associated with obesity-related traits, such as body mass index, hip circumference, and body weight. FTO encodes a protein with a novel C-terminal α-helical domain and an N-terminal double-strand β-helix domain which is conserved in Fe(II) and 2-oxoglutarate-dependent oxygenase family. In vitro, FTO protein can demethylate single-stranded DNA or RNA with a preference for 3-methylthymine or 3-methyluracil. Its physiological substrates and function, however, remain to be defined. Here we report the generation and analysis of mice carrying a conditional deletion allele of Fto. Our results demonstrate that Fto plays an essential role in postnatal growth. The mice lacking Fto completely display immediate postnatal growth retardation with shorter body length, lower body weight, and lower bone mineral density than control mice, but their body compositions are relatively normal. Consistent with the growth retardation, the Fto mutant mice have reduced serum levels of IGF-1. Moreover, despite the ubiquitous expression of Fto, its specific deletion in the nervous system results in similar phenotypes as the whole body deletion, indicating that Fto functions in the central nerve system to regulate postnatal growth

    Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood

    Get PDF
    Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood

    Double Toil and Trouble: Grade Retention and Academic Performance

    Full text link

    Half-life of exogenous growth hormone following suppression of endogenous growth hormone secretion with somatostatin in type I (insulin-dependent) diabetes mellitus.

    No full text
    OBJECTIVE: To estimate the half-life of growth hormone in young adult patients with type I (insulin-dependent) diabetes mellitus following bolus injection and prolonged exposure for the purpose of deconvolution analysis of plasma growth hormone profiles to determine growth hormone secretory rates. DESIGN: In the bolus study, an intravenous bolus injection of 100 mU of biosynthetic human growth hormone was given while endogenous growth hormone was suppressed by a continuous infusion of somatostatin under three different glucose clamp conditions: normoglycaemia (5 mmol/l) with normoinsulinaemia (65 pmol/l); hyperglycaemia (12 mmol/l) with normoinsulinaemia; and normoglycaemia with hyperinsulinaemia (360 pmol/l). In the infusion study, the effect of prolonged and repeated growth hormone exposure upon the growth hormone half-life was estimated. Three pulses of 60 minutes growth hormone infusion (6 mU/kg/pulse) two hours apart under euglycaemic somatostatin suppression were applied. PATIENTS: Six young adult patients with type I (insulin-dependent) diabetes mellitus were studied in both the bolus and the infusion study. RESULTS: Mean GH half-lives by mono-exponential analysis were not significantly different remaining unaltered by the short-term metabolic changes of hyperglycaemia and hyperinsulinaemia. Data were therefore pooled yielding an overall mean GH half-life of 13.6 minutes (range 11.9-19.4). Applying a bi-exponential model mean GH half-lives were 3.1 minutes (range 2.5-5.9) for the rapid phase of distribution of the hormone and 13.8 minutes (range 9.6-16.9) for the decay of GH from the circulation. The GH half-life during the infusions studies did not vary with repeated exposure but was significantly longer (mean half-life of 25.7 minutes; range 19.4-37.1) than during the bolus studies (P less than 0.001). CONCLUSIONS: The half-life of exogenous r-hGH is not affected by glucose or insulin concentrations but increases after prolonged GH exposure in young adults with type I (insulin-dependent) diabetes mellitus
    corecore