1,146 research outputs found

    Asymptotic tunneling conductance in Luttinger liquids

    Full text link
    Conductance through weak constrictions in Luttinger liquids is shown to vanish with frequency ω\omega as c1ω2+c2ω2/g−2c_1 \omega^2 + c_2 \omega^{2/g - 2}, where gg is a dimensionless parameter characterizing the Luttinger liquid phase, and c1c_1 and c2c_2 are nonuniversal constants. The first term arises from the ^^ Coulomb blockade' effect and dominates for g<1/2g < 1/2, whereas the second results from eliminating high-energy modes and dominates for g>1/2g > 1/2.Comment: Latex file + one appended postcript figur

    A search for ferromagnetism in transition-metal-doped piezoelectric ZnO

    Full text link
    We present the results of a computational study of ZnO in the presence of Co and Mn substitutional impurities. The goal of our work is to identify potential ferromagnetic ground states within the (Zn,Co)O or (Zn,Mn)O material systems that are also good candidates for piezoelectricity. We find that, in contrast to previous results, robust ferromagnetism is not obtained by substitution of Co or Mn on the Zn site, unless additional carriers (holes) are also incorporated. We propose a practical scheme for achieving such pp-type doping in ZnO

    Late-Glacial Paleoecology of the Middle Susitna Valley, Alaska: Environmental Context for Human Dispersal

    Get PDF
    We present here the results of multi-proxy analyses (sediment geochemistry, diatoms, and pollen) from sediment cores collected at four lakes in the middle Susitna Valley, Alaska. These lakes form a transect from the tundra to the boreal forest. The retrieved cores span from ∼12,000 cal yr BP to the present, with age control provided by radiometric dates and tephra deposits, some of which are newly identified. Results indicate that deglaciation occurred before 12,000 cal yr BP and that by that time, the lakes were deep, productive, and surrounded by shrub tundra. The lake with the highest sampling resolution indicates a brief climatic reversal ∼11,500 cal yr BP with decreased diatom-inferred lake level and lowered lake productivity, and reduced shrub presence. During the early to middle Holocene, all of the sedimentary records provide evidence of climatic amelioration with tree expansion and productive lakes. A middle to late Holocene climatic deterioration with reduced trees and a shallower, less productive lake is also indicated. In addition, the prominent Watana tephra at ∼4,000 cal yr BP likely reduced lake productivity and affected the vegetation. Even though the region was relatively productive soon after deglaciation, people did not occupy the region until ∼11,000 cal yr BP, about 1000 years later, and then only sparsely. By the middle and late Holocene, the region was more densely populated and this shift in human occupancy presumably reflects changes in resource abundance, especially caribou. Whether the Watana ashfall influenced caribou abundance and thus people, is still under investigation, but given the tephra’s effect on vegetation and lake productivity, it seems likely

    Hydrogen molecule in a magnetic field: The lowest states of the Pi manifold and the global ground state of the parallel configuration

    Full text link
    The electronic structure of the hydrogen molecule in a magnetic field is investigated for parallel internuclear and magnetic field axes. The lowest states of the Π\Pi manifold are studied for spin singlet and triplet(Ms=−1)(M_s = -1) as well as gerade and ungerade parity for a broad range of field strengths 0≤B≤100a.u.0 \leq B \leq 100 a.u. For both states with gerade parity we observe a monotonous decrease in the dissociation energy with increasing field strength up to B=0.1a.u.B = 0.1 a.u. and metastable states with respect to the dissociation into two H atoms occur for a certain range of field strengths. For both states with ungerade parity we observe a strong increase in the dissociation energy with increasing field strength above some critical field strength BcB_c. As a major result we determine the transition field strengths for the crossings among the lowest 1Σg^1\Sigma_g, 3Σu^3\Sigma_u and 3Πu^3\Pi_u states. The global ground state for B≲0.18a.u.B \lesssim 0.18 a.u. is the strongly bound 1Σg^1\Sigma_g state. The crossings of the 1Σg^1\Sigma_g with the 3Σu^3\Sigma_u and 3Πu^3\Pi_u state occur at B≈0.18B \approx 0.18 and B≈0.39a.u.B \approx0.39 a.u., respectively. The transition between the 3Σu^3\Sigma_u and 3Πu^3\Pi_u state occurs at B≈12.3a.u.B \approx 12.3 a.u. Therefore, the global ground state of the hydrogen molecule for the parallel configuration is the unbound 3Σu^3\Sigma_u state for 0.18≲B≲12.3a.u.0.18 \lesssim B \lesssim 12.3 a.u. The ground state for B≳12.3a.u.B \gtrsim 12.3 a.u. is the strongly bound 3Πu^3\Pi_u state. This result is of great relevance to the chemistry in the atmospheres of magnetic white dwarfs and neutron stars.Comment: submitted to Physical Review

    Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)

    Full text link
    We have performed high resolution XPS experiments of the Ru(0001) surface, both clean and covered with well-defined amounts of oxygen up to 1 ML coverage. For the clean surface we detected two distinct components in the Ru 3d_{5/2} core level spectra, for which a definite assignment was made using the high resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2), p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level peaks which are shifted up to 1 eV to higher binding energies. Very good agreement with density functional theory calculations of these Surface Core Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru SCLSs turns out to be the number of directly coordinated O atoms. Since the calculations permit the separation of initial and final state effects, our results give valuable information for the understanding of bonding and screening at the surface, otherwise not accessible in the measurement of the core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    The electronic structure of amorphous silica: A numerical study

    Full text link
    We present a computational study of the electronic properties of amorphous SiO2. The ionic configurations used are the ones generated by an earlier molecular dynamics simulations in which the system was cooled with different cooling rates from the liquid state to a glass, thus giving access to glass-like configurations with different degrees of disorder [Phys. Rev. B 54, 15808 (1996)]. The electronic structure is described by a tight-binding Hamiltonian. We study the influence of the degree of disorder on the density of states, the localization properties, the optical absorption, the nature of defects within the mobility gap, and on the fluctuations of the Madelung potential, where the disorder manifests itself most prominently. The experimentally observed mismatch between a photoconductivity threshold of 9 eV and the onset of the optical absorption around 7 eV is interpreted by the picture of eigenstates localized by potential energy fluctuations in a mobility gap of approximately 9 eV and a density of states that exhibits valence and conduction band tails which are, even in the absence of defects, deeply located within the former band gap.Comment: 21 pages of Latex, 5 eps figure

    The physics of dynamical atomic charges: the case of ABO3 compounds

    Full text link
    Based on recent first-principles computations in perovskite compounds, especially BaTiO3, we examine the significance of the Born effective charge concept and contrast it with other atomic charge definitions, either static (Mulliken, Bader...) or dynamical (Callen, Szigeti...). It is shown that static and dynamical charges are not driven by the same underlying parameters. A unified treatment of dynamical charges in periodic solids and large clusters is proposed. The origin of the difference between static and dynamical charges is discussed in terms of local polarizability and delocalized transfers of charge: local models succeed in reproducing anomalous effective charges thanks to large atomic polarizabilities but, in ABO3 compounds, ab initio calculations favor the physical picture based upon transfer of charges. Various results concerning barium and strontium titanates are presented. The origin of anomalous Born effective charges is discussed thanks to a band-by-band decomposition which allows to identify the displacement of the Wannier center of separated bands induced by an atomic displacement. The sensitivity of the Born effective charges to microscopic and macroscopic strains is examined. Finally, we estimate the spontaneous polarization in the four phases of barium titanate.Comment: 25 pages, 6 Figures, 10 Tables, LaTe

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Bonding, Moment Formation, and Magnetic Interactions in Ca14MnBi11 and Ba14MnBi11

    Full text link
    The ``14-1-11'' phase compounds based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11 show unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local orbital based method within the local spin density approximation to study the electronic structure, we find a gap between a bonding valence band complex and an antibonding conduction band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit and partially compensates the high spin d^5 Mn moment, leaving a net spin near 4 \mu_B that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating `jungle gym' networks of spin 4/2 MnBi4^{9-} units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferro- and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.Comment: 17 pages, containing 10 postscript figures and 5 tables. Two additional figures (Fig.8 and 11 of the paper) are provided in JPG format in separate files. Submitted to Phys. Rev. B on September 20th 200
    • …
    corecore