3,949 research outputs found

    Multipoint, high time resolution galactic cosmic ray observations associated with two interplanetary coronal mass ejections

    Get PDF
    [1] Galactic cosmic rays (GCRs) play an important role in our understanding of the interplanetary medium (IPM). The causes of their short timescale variations, however, remain largely unexplored. In this paper, we compare high time resolution, multipoint space-based GCR data to explore structures in the IPM that cause these variations. To ensure that features we see in these data actually relate to conditions in the IPM, we look for correlations between the GCR time series from two instruments onboard the Polar and INTEGRAL (International Gamma Ray Astrophysical Laboratory) satellites, respectively inside and outside Earth\u27s magnetosphere. We analyze the period of 18–24 August 2006 during which two interplanetary coronal mass ejections (ICMEs) passed Earth and produced a Forbush decrease (Fd) in the GCR flux. We find two periods, for a total of 10 h, of clear correlation between small-scale variations in the two GCR time series during these 7 days, thus demonstrating that such variations are observable using space-based instruments. The first period of correlation lasted 6 h and began 2 h before the shock of the first ICME passed the two spacecraft. The second period occurred during the initial decrease of the Fd, an event that did not conform to the typical one- or two-step classification of Fds. We propose that two planar magnetic structures preceding the first ICME played a role in both periods: one structure in driving the first correlation and the other in initiating the Fd

    A differential pressure instrument with wireless telemetry for in-situ measurement of fluid flow across sediment-water boundaries

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution (3.0) License. The definitive version was published in Sensors 9 (2009): 404-429, doi:10.3390/s90100404.An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument’s two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated

    Evidence for a fractional quantum Hall state with anisotropic longitudinal transport

    Get PDF
    At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break rotational symmetry, exhibiting resistivities which are isotropic in the plane. In contrast, at lower fields, when the Fermi level lies in the N≥2N\ge2 third and several higher LLs, the 2DES displays a distinctly different class of collective states. In particular, near half filling of these high LLs the 2DES exhibits a strongly anisotropic longitudinal resistance at low temperatures (Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing broken rotational symmetry and orientational order (Koulakov et al., 1996; Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999; Fradkin et al, 2010). Here we report a surprising new observation: An electronic configuration in the N=1 second LL whose resistivity tensor simultaneously displays a robust fractionally quantized Hall plateau and a strongly anisotropic longitudinal resistance resembling that of the stripe phases.Comment: Nature Physics, (2011

    Non-relativistic metrics from back-reacting fermions

    Full text link
    It has recently been pointed out that under certain circumstances the back-reaction of charged, massive Dirac fermions causes important modifications to AdS_2 spacetimes arising as the near horizon geometry of extremal black holes. In a WKB approximation, the modified geometry becomes a non-relativistic Lifshitz spacetime. In three dimensions, it is known that integrating out charged, massive fermions gives rise to gravitational and Maxwell Chern-Simons terms. We show that Schrodinger (warped AdS_3) spacetimes exist as solutions to a gravitational and Maxwell Chern-Simons theory with a cosmological constant. Motivated by this, we look for warped AdS_3 or Schrodinger metrics as exact solutions to a fully back-reacted theory containing Dirac fermions in three and four dimensions. We work out the dynamical exponent in terms of the fermion mass and generalize this result to arbitrary dimensions.Comment: 26 pages, v2: typos corrected, references added, minor change

    Low-cost electronic sensors for environmental research: pitfalls and opportunities

    Get PDF
    Repeat observations underpin our understanding of environmental processes, but financial constraints often limit scientists’ ability to deploy dense networks of conventional commercial instrumentation. Rapid growth in the Internet-Of-Things (IoT) and the maker movement is paving the way for low-cost electronic sensors to transform global environmental monitoring. Accessible and inexpensive sensor construction is also fostering exciting opportunities for citizen science and participatory research. Drawing on 6 years of developmental work with Arduino-based open-source hardware and software, extensive laboratory and field testing, and incor- poration of such technology into active research programmes, we outline a series of successes, failures and lessons learned in designing and deploying environmental sensors. Six case studies are presented: a water table depth probe, air and water quality sensors, multi-parameter weather stations, a time-sequencing lake sediment trap, and a sonic anemometer for monitoring sand transport. Schematics, code and purchasing guidance to reproduce our sensors are described in the paper, with detailed build instructions hosted on our King’s College London Geography Environmental Sensors Github repository and the FreeStation project website. We show in each case study that manual design and construction can produce research-grade scientific instrumentation (mean bias error for calibrated sensors –0.04 to 23%) for a fraction of the conventional cost, provided rigorous, sensor-specific calibration and field testing is conducted. In sharing our collective experiences with build-it- yourself environmental monitoring, we intend for this paper to act as a catalyst for physical geographers and the wider environmental science community to begin incorporating low-cost sensor development into their research activities. The capacity to deploy denser sensor networks should ultimately lead to superior envi- ronmental monitoring at the local to global scales

    Developing meaningful water-energy-food-environment (WEFE) nexus indicators with stakeholders: A Lake Victoria case study

    Get PDF
    The Upper White Nile (UWN) basin plays a critical role in supporting essential ecosystem services and the livelihoods of millions of people in East Africa. The basin has been exposed to tremendous environmental pressures following high population growth, urbanisation, and land use change, all of which are compounded by the threats posed by climate change and insufficient financial and human resources. The water-energy-food-environment (WEFE) nexus provides a framework to assess solution options towards sustainable development by minimising the trade-offs between water, energy, and food resources. However, the majority of existing WEFE nexus indicators and tools tend to be developed without consideration of practitioners at the local level, thus constraining the practical application within real-world contexts. To try to address this gap and operationalise the WEFE nexus, we examined how local stakeholders frame the most pressing WEFE nexus challenges within the UWN basin, how these can be represented as indicators, and how existing WEFE nexus modelling tools could address this. The findings highlight the importance of declining water quality and aquatic ecosystem health as a result of deforestation and increasing agricultural intensity, with stakeholders expressing concerns for the uncertain impacts from climate change. Furthermore, a review of current WEFE nexus modelling tools reveals how they tend to be insufficient in addressing the most pressing environmental challenges within the basin, with a significant gap regarding the inclusion of water quality and aquatic ecosystem indicators. Subsequently, these findings are combined in order to guide the development of WEFE nexus indicators that have the potential to spatially model the trade-offs within the WEFE nexus in the UWN basin under climate change scenarios. This work provides an example of how incorporating local stakeholder's values and concerns can contribute to the development of meaningful indicators, that are fit-for-purpose and respond to the actual local needs

    Normothermic Ex Vivo Lung Perfusion (Novel) as an Assessment of Extended Criteria Donor Lungs: A Prospective Multi-Center Clinical Trial

    Get PDF
    Purpose: Ex vivo lung perfusion (EVLP) allows re-evaluation of extended criteria/marginal donor lungs. This can increase the number of lung transplants. However, the long-term outcomes of transplanting EVLP-screened lungs in a multicenter setting are unknown. We proposed to evaluate the short- and long-term outcomes of EVLP performed at multiple centers. Methods: This is a prospective, nonrandomized clinical trial. Seventeen lung transplant centers in the United States. Adult patients with end-stage pulmonary disease requiring lung transplant from May 2011 to December 2017 were eligible. Lung allografts initially deemed extended criteria/marginal (n=216) were placed on EVLP and re-evaluated prior to transplant. Patients received either standard donors (n=116) or lungs screened with EVLP (n=110). Results: Half of the lung grafts (110/216, 50.9%) placed on EVLP were transplanted. The incidence of primary graft dysfunction 24 hours post-transplant was higher in the EVLP group (25.5% vs 10.3%, p=0.003), but was not significantly different 48 hours (EVLP: 15.5%, control: 9.5%, p=0.49) and 72 hours (13.6% vs 6.9%, p=0.34) post-transplant. Survival was not significantly different between the 2 groups 1 year (n=226, EVLP: 86%, control: 94%, p=0.06), 3 years (n=226, EVLP: 68%, control: 76%, p=0.16, Figure), or 5 years (n=159, EVLP: 59%, control: 65%, p=0.68) post-transplant. There were also no differences in pulmonary function, the incidence of chronic lung allograft dysfunction or quality of life measures post-transplant. Conclusion: In this multicenter study, recipients of lungs that were re-evaluated on EVLP and deemed suitable for transplant had similar outcomes as a recipients of a standard lung transplants. EVLP offers the opportunity to screen donated lungs initially considered high risk and can safely increase the availability of transplantable lungs without compromising outcomes

    Quantum criticality and black holes

    Get PDF
    Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport co-efficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the AdS/CFT duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport co-efficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.Comment: 12 pages, 2 figures; Talk at LT25, Amsterda

    Ibrutinib restores immune cell numbers and function in first-line and relapsed/refractory chronic lymphocytic leukemia

    Get PDF
    © 2020 The Authors Ibrutinib positively modulates many T-cell subsets in chronic lymphocytic leukemia (CLL). To understand ibrutinib\u27s effects on the broader landscape of immune cell populations, we comprehensively characterized changes in circulating counts of 21 immune blood cell subsets throughout the first year of treatment in patients with relapsed/refractory (R/R) CLL (n = 55, RESONATE) and previously untreated CLL (n = 50, RESONATE-2) compared with untreated age-matched healthy donors (n = 20). Ibrutinib normalized abnormal immune cell counts to levels similar to those of age-matched healthy donors. Ibrutinib significantly decreased pathologically high circulating B cells, regulatory T cells, effector/memory CD4+ and CD8+ T cells (including exhausted and chronically activated T cells), natural killer (NK) T cells, and myeloid-derived suppressor cells; preserved naive T cells and NK cells; and increased circulating classical monocytes. T-cell function was assessed in response to T-cell receptor stimulation in patients with R/R CLL (n = 21) compared with age-matched healthy donors (n = 18). Ibrutinib significantly restored T-cell proliferative ability, degranulation, and cytokine secretion. Over the same period, ofatumumab or chlorambucil did not confer the same spectrum of normalization as ibrutinib in multiple immune subsets. These results establish that ibrutinib has a significant and likely positive impact on circulating malignant and nonmalignant immune cells and restores healthy T-cell function
    • …
    corecore