6 research outputs found

    An investigation into reduced milk production following dietary alteration on an Irish dairy farm

    Get PDF
    A nutritional evaluation of an Irish dairy herd indicated gross overfeeding of late lactation cows, over-conditioning of cows at parturition and a high rate of body condition loss in early lactation. Metabolisable-energy based nutritional modelling software was used to guide recommended dietary changes to prevent excessive condition gain in late lactation. Immediately following the implementation of the changes there was an unexpected reduction in performance affecting both milk yield and protein concentration. An investigation into the poor performance revealed underestimation of peak milk yield; over-estimation of maize silage quality; a large difference in the concentrate being fed compared to the concentrate recommended, and failure of the blend of concentrate ingredients to maintain the intended proportions in the in-parlour feeding system. The estimated maximum cumulative effect of these errors was to cause undersupply of energy and protein in the recommended diet of 16% and 3% respectively to cows in early lactation. Use of a net-energy nutritional model would have indicated a requirement for a higher energy supply in this case. This report highlights the challenges in obtaining accurate on-farm data for use in dairy cow nutritional models

    Revisiting the Relationships between Fat-to-Protein Ratio in Milk and Energy Balance in Dairy Cows of Different Parities, and at Different Stages of Lactation

    Get PDF
    Publication history: Accepted - 12 November 2021; Published - 14 November 2021.Simple Summary Data from 840 Holstein-Friesian cows (1321 lactations) were used to evaluate trends in fat-to-protein ratios in milk (FPR), and the use of FPR as an indicator of energy balance (EB). The fat-to-protein ratio was negatively related to EB, and this relationship became more negative with increased parity. Regression slopes describing linear relationships between FPR and EB differed over time, although trends were inconsistent. Similarly, ‘High’ FPR scores in milk (≥1.5) were consistently associated with a greater negative energy balance, milk yields, body weight loss, and plasma non-esterified fatty acid concentrations; however, their relationships with dry matter intake did not follow a clear trend. Although FPR can provide an indication of EB at a herd level, this analysis suggests that FPR cannot accurately predict the EB of individual cows. Abstract A statistical re-assessment of aggregated individual cow data was conducted to examine trends in fat-to-protein ratio in milk (FPR), and relationships between FPR and energy balance (EB, MJ of ME/day) in Holstein-Friesian dairy cows of different parities, and at different stages of lactation. The data were collected from 27 long-term production trials conducted between 1996 and 2016 at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough, Northern Ireland. In total, 1321 lactations (1 to 20 weeks in milk; WIM), derived from 840 individual cows fed mainly grass silage-based diets, were included in the analysis. The energy balance was calculated daily and then averaged weekly for statistical analyses. Data were further split in 4 wk. intervals, namely, 1–4, 5–8, 9–12, 13–16, and 17–20 WIM, and both partial correlations and linear regressions (mixed models) established between the mean FPR and EB during these periods. Three FPR score categories (‘Low’ FPR, 1.5) were adopted and the performance and EB indicators within each category were compared. As expected, multiparous cows experienced a greater negative EB compared to primiparous cows, due to their higher milk production relative to DMI. Relatively minor differences in milk fat and protein content resulted in large differences in FPR curves. Second lactation cows displayed the lowest weekly FPR, and this trend was aligned with smaller BW losses and lower concentrations of non-esterified fatty acids (NEFA) until at least 8 WIM. Partial correlations between FPR and EB were negative, and ‘greatest’ in early lactation (1–4 WIM; r = −0.38 on average), and gradually decreased as lactation progressed across all parities (17–20 WIM; r = −0.14 on average). With increasing parity, daily EB values tended to become more negative per unit of FPR. In primiparous cows, regression slopes between FPR and EB differed between 1–4 and 5–8 WIM (−54.6 vs. −47.5 MJ of ME/day), while differences in second lactation cows tended towards significance (−57.2 vs. −64.4 MJ of ME/day). Irrespective of the lactation number, after 9–12 WIM, there was a consistent trend for the slope of the linear relationships between FPR and EB to decrease as lactation progressed, with this likely reflecting the decreasing milk nutrient demands of the growing calf. The incidence of ‘High’ FPR scores was greatest during 1–4 WIM, and decreased as lactation progressed. ‘High’ FPR scores were associated with increased energy-corrected milk (ECM) yields across all parities and stages of lactation, and with smaller BW gains and increasing concentrations (log transformed) of blood metabolites (non-esterified fatty acid, NEFA; beta-hydroxybutyrate, BHB) until 8 WIM. Results from the present study highlight the strong relationships between FPR in milk, physiological changes, and EB profiles during early lactation. However, while FPR can provide an indication of EB at a herd level, the large cow-to-cow variation indicates that FPR cannot be used as a robust indicator of EB at an individual cow level.The interaction between genotype and nutrition in high yielding dairy cows in seasonal grass-based systems of milk production (NutriGen project) was funded by the Department of Agriculture, Food and the Marine (Republic of Ireland) and the Department of Agriculture, Environment and Rural Affairs (Northern Ireland) under funding agreement 15/S/675

    Effects of Protein Supplementation Strategy and Genotype on Milk Production and Nitrogen Utilisation Efficiency in Late-Lactation, Spring-Calving Grazing Dairy Cows

    No full text
    The objectives of this study were to evaluate the effects of (1) protein supplementation strategy, (2) cow genotype and (3) an interaction between protein supplementation strategy and cow genotype on milk production and nitrogen (N) utilisation efficiency (milk N output/ total dietary N intake × 100; NUE) in late-lactation, spring-calving grazing dairy cows. A 2 × 2 factorial arrangement experiment, with two feeding strategies [13% (lower crude protein; LCP) and 18% CP (higher CP; HCP) supplements with equal metabolisable protein supply] offered at 3.6 kg dry matter/cow perday, and two cow genotype groups [lower milk genotype (LM) and higher milk genotype (HM)], was conducted over 53 days. Cows were offered 15 kg dry matter of grazed herbage/cow/day. Herbage intake was controlled using electric strip wires which allowed cows to graze their daily allocation-only. There was an interaction for herbage dry matter intake within cows offered HCP, where higher milk genotype (HM) cows had increased herbage dry matter intake (+0.58 kg) compared to lower milk genotype (LM) cows. Offering cows LCP decreased fat + protein yield (−110 g) compared to offering cows HCP. Offering cows LCP decreased the total feed N proportion that was recovered in the urine (−0.007 proportion units) and increased the total feed N proportion that was recovered in the faeces (+0.008 proportion units) compared to offering cows HCP. In conclusion, our study shows that reducing the supplementary CP concentration from 18% to 13% resulted in decreased milk production (−9.8%), reduced partitioning of total feed N to urine (−0.9%) and increased partitioning of total feed N to faeces (+14%) in late lactation, grazing dairy cows

    Effects of Protein Supplementation Strategy and Genotype on Milk Production and Nitrogen Utilisation Efficiency in Late-Lactation, Spring-Calving Grazing Dairy Cows

    No full text
    The objectives of this study were to evaluate the effects of (1) protein supplementation strategy, (2) cow genotype and (3) an interaction between protein supplementation strategy and cow genotype on milk production and nitrogen (N) utilisation efficiency (milk N output/ total dietary N intake × 100; NUE) in late-lactation, spring-calving grazing dairy cows. A 2 × 2 factorial arrangement experiment, with two feeding strategies [13% (lower crude protein; LCP) and 18% CP (higher CP; HCP) supplements with equal metabolisable protein supply] offered at 3.6 kg dry matter/cow perday, and two cow genotype groups [lower milk genotype (LM) and higher milk genotype (HM)], was conducted over 53 days. Cows were offered 15 kg dry matter of grazed herbage/cow/day. Herbage intake was controlled using electric strip wires which allowed cows to graze their daily allocation-only. There was an interaction for herbage dry matter intake within cows offered HCP, where higher milk genotype (HM) cows had increased herbage dry matter intake (+0.58 kg) compared to lower milk genotype (LM) cows. Offering cows LCP decreased fat + protein yield (−110 g) compared to offering cows HCP. Offering cows LCP decreased the total feed N proportion that was recovered in the urine (−0.007 proportion units) and increased the total feed N proportion that was recovered in the faeces (+0.008 proportion units) compared to offering cows HCP. In conclusion, our study shows that reducing the supplementary CP concentration from 18% to 13% resulted in decreased milk production (−9.8%), reduced partitioning of total feed N to urine (−0.9%) and increased partitioning of total feed N to faeces (+14%) in late lactation, grazing dairy cows

    The prevalence, temporal and spatial trends in bulk tank equivalent milk fat depression in Irish milk recorded herds.

    Get PDF
    Milk fat is important in terms of economic value and in its potential to provide information concerning cow diet and health. Under current milk payment schemes in Ireland farmer income is directly linked to milk fat production.University College DublinDevenish Nutritio
    corecore