22 research outputs found

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Transcriptomic and Metabolic Responses to a Live-Attenuated Francisella tularensis Vaccine

    No full text
    The immune response to live-attenuated Francisella tularensis vaccine and its host evasion mechanisms are incompletely understood. Using RNA-Seq and LC–MS on samples collected pre-vaccination and at days 1, 2, 7, and 14 post-vaccination, we identified differentially expressed genes in PBMCs, metabolites in serum, enriched pathways, and metabolites that correlated with T cell and B cell responses, or gene expression modules. While an early activation of interferon α/β signaling was observed, several innate immune signaling pathways including TLR, TNF, NF-κB, and NOD-like receptor signaling and key inflammatory cytokines such as Il-1α, Il-1β, and TNF typically activated following infection were suppressed. The NF-κB pathway was the most impacted and the likely route of attack. Plasma cells, immunoglobulin, and B cell signatures were evident by day 7. MHC I antigen presentation was more actively up-regulated first followed by MHC II which coincided with the emergence of humoral immune signatures. Metabolomics analysis showed that glycolysis and TCA cycle-related metabolites were perturbed including a decline in pyruvate. Correlation networks that provide hypotheses on the interplay between changes in innate immune, T cell, and B cell gene expression signatures and metabolites are provided. Results demonstrate the utility of transcriptomics and metabolomics for better understanding molecular mechanisms of vaccine response and potential host–pathogen interactions

    High-Throughput Isolation of Caenorhabditis elegans Deletion Mutants

    No full text
    The nematode Caenorhabditis elegans is the first animal whose genome is completely sequenced, providing a rich source of gene information relevant to metazoan biology and human disease. This abundant sequence information permits a broad-based gene inactivation approach in C. elegans, in which chemically mutagenized nematode populations are screened by PCR for deletion mutations in a specific targeted gene. By handling mutagenized worm growth, genomic DNA templates, PCR screens, and mutant recovery all in 96-well microtiter plates, we have scaled up this approach to isolate deletion mutations in >100 genes to date. Four chemical mutagens, including ethyl methane sulfonate, ethlynitrosourea, diepoxyoctane, and ultraviolet-activated trimethylpsoralen, induced detectable deletions at comparable frequencies. The deletions averaged ∼1400 bp in size when using a ∼3 kb screening window. The vast majority of detected deletions removed portions of one or more exons, likely resulting in loss of gene function. This approach requires only the knowledge of a target gene sequence and a suitable mutagen, and thus provides a scalable systematic approach to gene inactivation for any organism that can be handled in high density arrays

    A platform for experimental precision medicine: The extended BXD mouse family

    Get PDF
    The challenge of precision medicine is to model complex interactions among DNA variants, phenotypes, development, environments, and treatments. We address this challenge by expanding the BXD family of mice to 140 fully isogenic strains, creating a uniquely powerful model for precision medicine. This family segregates for 6 million common DNA variants-a level that exceeds many human populations. Because each member can be replicated, heritable traits can be mapped with high power and precision. Current BXD phenomes are unsurpassed in coverage and include much omics data and thousands of quantitative traits. BXDs can be extended by a single-generation cross to as many as 19,460 isogenic F1 progeny, and this extended BXD family is an effective platform for testing causal modeling and for predictive validation. BXDs are a unique core resource for the field of experimental precision medicine

    High-Throughput Screen for Inhibitors of Klebsiella pneumoniae Virulence Using a Tetrahymena pyriformis Co-Culture Surrogate Host Model.

    No full text
    The continuing emergence of antibacterial resistance reduces the effectiveness of antibiotics and drives an ongoing search for effective replacements. Screening compound libraries for antibacterial activity in standard growth media has been extensively explored and may be showing diminishing returns. Inhibition of bacterial targets that are selectively important under in vivo (infection) conditions and, therefore, would be missed by conventional in vitro screens might be an alternative. Surrogate host models of infection, however, are often not suitable for high-throughput screens. Here, we adapted a medium-throughput Tetrahymena pyriformis surrogate host model that was successfully used to identify inhibitors of a hyperviscous Klebsiella pneumoniae strain to a high-throughput format and screened circa 1.2 million compounds. The screen was robust and identified confirmed hits from different chemical classes with potent inhibition of K. pneumoniae growth in the presence of T. pyriformis that lacked any appreciable direct antibacterial activity. Several of these appeared to inhibit capsule/mucoidy, which are key virulence factors in hypervirulent K. pneumoniae. A weakly antibacterial inhibitor of LpxC (essential for the synthesis of the lipid A moiety of lipopolysaccharides) also appeared to be more active in the presence of T. pyriformis, which is consistent with the role of LPS in virulence as well as viability in K. pneumoniae

    Proteomic Analysis of Human Immune Responses to Live-Attenuated Tularemia Vaccine

    No full text
    Francisella tularensis (F. tularensis) is an intracellular pathogen that causes a potentially debilitating febrile illness known as tularemia. F. tularensis can be spread by aerosol transmission and cause fatal pneumonic tularemia. If untreated, mortality rates can be as high as 30%. To study the host responses to a live-attenuated tularemia vaccine, peripheral blood mononuclear cell (PBMC) samples were assayed from 10 subjects collected pre- and post-vaccination, using both the 2D-DIGE/MALDI-MS/MS and LC-MS/MS approaches. Protein expression related to antigen processing and presentation, inflammation (PPARγ nuclear receptor), phagocytosis, and gram-negative bacterial infection was enriched at Day 7 and/or Day 14. Protein candidates that could be used to predict human immune responses were identified by evaluating the correlation between proteome changes and humoral and cellular immune responses. Consistent with the proteomics data, parallel transcriptomics data showed that MHC class I and class II-related signals important for protein processing and antigen presentation were up-regulated, further confirming the proteomic results. These findings provide new biological insights that can be built upon in future clinical studies, using live attenuated strains as immunogens, including their potential use as surrogates of protection

    Systems Vaccinology for a Live Attenuated Tularemia Vaccine Reveals Unique Transcriptional Signatures That Predict Humoral and Cellular Immune Responses

    No full text
    Background: Tularemia is a potential biological weapon due to its high infectivity and ease of dissemination. This study aimed to characterize the innate and adaptive responses induced by two different lots of a live attenuated tularemia vaccine and compare them to other well-characterized viral vaccine immune responses. Methods: Microarray analyses were performed on human peripheral blood mononuclear cells (PBMCs) to determine changes in transcriptional activity that correlated with changes detected by cellular phenotyping, cytokine signaling, and serological assays. Transcriptional profiles after tularemia vaccination were compared with yellow fever [YF-17D], inactivated [TIV], and live attenuated [LAIV] influenza. Results: Tularemia vaccine lots produced strong innate immune responses by Day 2 after vaccination, with an increase in monocytes, NK cells, and cytokine signaling. T cell responses peaked at Day 14. Changes in gene expression, including upregulation of STAT1, GBP1, and IFIT2, predicted tularemia-specific antibody responses. Changes in CCL20 expression positively correlated with peak CD8+ T cell responses, but negatively correlated with peak CD4+ T cell activation. Tularemia vaccines elicited gene expression signatures similar to other replicating vaccines, inducing early upregulation of interferon-inducible genes. Conclusions: A systems vaccinology approach identified that tularemia vaccines induce a strong innate immune response early after vaccination, similar to the response seen after well-studied viral vaccines, and produce unique transcriptional signatures that are strongly correlated to the induction of T cell and antibody responses
    corecore