34 research outputs found
Rules for the computer-aided synthesis of fault trees
This thesis describes the development of a computer-aided fault tree synthesis package
for application in the process industries. It builds on the previous research work carried
out in the Plant Engineering Group at Loughborough University. The emphasis has been
put on describing the underlying methodology as opposed to the actual computer
programs.
The methodology described was developed by modelling a number of "real" systems,
which had already been analysed using manual fault tree construction techniques by
British Gas plc. Additionally a number of standard examples from the literature were
utilised, as well as a large number of contrived examples to fully evaluate the package.
The problems encountered and their solution are described.
The culmination of this project was the implementation of the computer package at the
Midlands Research Station of British Gas plc. It is not intended that the package should
replace the fault tree expert. It should rather be viewed as a tool to facilitate the work of
the process engineer, particularly during the design phase. This should enable the
evaluation of many more options, which would otherwise have been proved prohibitive
by the effort required to manually synthesise the fault trees
Targeted temperature management in patients with intracerebral haemorrhage, subarachnoid haemorrhage, or acute ischaemic stroke: updated consensus guideline recommendations by the Neuroprotective Therapy Consensus Review (NTCR) group
Background: There is a lack of consistent, evidence-based guidelines for the management of patients with fever after brain injury. The aim was to update previously published consensus recommendations on targeted temperature management after intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke in patients who require admission to critical care. Methods: A modified Delphi consensus, the Neuroprotective Therapy Consensus Review (NTCR), included 19 international neuro-intensive care experts with a subspecialty interest in the acute management of intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke. An online, anonymised survey was completed ahead of the meeting before the group came together to consolidate consensus and finalise recommendations on targeted temperature management. A threshold of ≥80% for consensus was set for all statements. Results: Recommendations were formulated based on existing evidence, literature review, and consensus. After intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke in patients who require critical care admission, core temperature should ideally be monitored continuously and maintained between 36.0°C and 37.5°C using automated feedback-controlled devices, where possible. Targeted temperature management should be commenced within 1 h of first fever identification with appropriate diagnosis and treatment of infection, maintained for as long as the brain remains at risk of secondary injury, and rewarming should be controlled. Shivering should be monitored and managed to limit risk of secondary injury. Following a single protocol for targeted temperature management across intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke is desirable. Conclusions: Based on a modified Delphi expert consensus process, these guidelines aim to improve the quality of targeted temperature management for patients after intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and acute ischaemic stroke in critical care, highlighting the need for further research to improve clinical guidelines in this setting
Patient experience and reflective learning (PEARL): a mixed methods protocol for staff insight development in acute and intensive care medicine in the UK
INTRODUCTION: Patient and staff experiences are strongly influenced by attitudes and behaviours, and provide important insights into care quality. Patient and staff feedback could be used more effectively to enhance behaviours and improve care through systematic integration with techniques for reflective learning. We aim to develop a reflective learning framework and toolkit for healthcare staff to improve patient, family and staff experience. METHODS & ANALYSIS: Local project teams including staff and patients from the acute medical units (AMUs) and intensive care units (ICUs) of three National Health Service trusts will implement two experience surveys derived from existing instruments: a continuous patient and relative survey and an annual staff survey. Survey data will be supplemented by ethnographic interviews and observations in the workplace to evaluate barriers to and facilitators of reflective learning. Using facilitated iterative co-design, local project teams will supplement survey data with their experiences of healthcare to identify events, actions, activities and interventions which promote personal insight and empathy through reflective learning. Outputs will be collated by the central project team to develop a reflective learning framework and toolkit which will be fed back to the local groups for review, refinement and piloting. The development process will be mapped to a conceptual theory of reflective learning which combines psychological and pedagogical theories of learning, alongside theories of behaviour change based on capability, opportunity and motivation influencing behaviour. The output will be a locally-adaptable workplace-based toolkit providing guidance on using reflective learning to incorporate patient and staff experience in routine clinical activities. ETHICS & DISSEMINATION: The PEARL project has received ethics approval from the London Brent Research Ethics Committee (REC Ref 16/LO/224). We propose a national cluster randomised step-wedge trial of the toolkit developed for large-scale evaluation of impact on patient outcomes
Co-infection and ICU-acquired infection in COIVD-19 ICU patients: a secondary analysis of the UNITE-COVID data set
Background: The COVID-19 pandemic presented major challenges for critical care facilities worldwide. Infections which develop alongside or subsequent to viral pneumonitis are a challenge under sporadic and pandemic conditions; however, data have suggested that patterns of these differ between COVID-19 and other viral pneumonitides. This secondary analysis aimed to explore patterns of co-infection and intensive care unit-acquired infections (ICU-AI) and the relationship to use of corticosteroids in a large, international cohort of critically ill COVID-19 patients.Methods: This is a multicenter, international, observational study, including adult patients with PCR-confirmed COVID-19 diagnosis admitted to ICUs at the peak of wave one of COVID-19 (February 15th to May 15th, 2020). Data collected included investigator-assessed co-infection at ICU admission, infection acquired in ICU, infection with multi-drug resistant organisms (MDRO) and antibiotic use. Frequencies were compared by Pearson's Chi-squared and continuous variables by Mann-Whitney U test. Propensity score matching for variables associated with ICU-acquired infection was undertaken using R library MatchIT using the "full" matching method.Results: Data were available from 4994 patients. Bacterial co-infection at admission was detected in 716 patients (14%), whilst 85% of patients received antibiotics at that stage. ICU-AI developed in 2715 (54%). The most common ICU-AI was bacterial pneumonia (44% of infections), whilst 9% of patients developed fungal pneumonia; 25% of infections involved MDRO. Patients developing infections in ICU had greater antimicrobial exposure than those without such infections. Incident density (ICU-AI per 1000 ICU days) was in considerable excess of reports from pre-pandemic surveillance. Corticosteroid use was heterogenous between ICUs. In univariate analysis, 58% of patients receiving corticosteroids and 43% of those not receiving steroids developed ICU-AI. Adjusting for potential confounders in the propensity-matched cohort, 71% of patients receiving corticosteroids developed ICU-AI vs 52% of those not receiving corticosteroids. Duration of corticosteroid therapy was also associated with development of ICU-AI and infection with an MDRO.Conclusions: In patients with severe COVID-19 in the first wave, co-infection at admission to ICU was relatively rare but antibiotic use was in substantial excess to that indication. ICU-AI were common and were significantly associated with use of corticosteroids
Clinical and organizational factors associated with mortality during the peak of first COVID-19 wave: the global UNITE-COVID study
Purpose: To accommodate the unprecedented number of critically ill patients with pneumonia caused by coronavirus disease 2019 (COVID-19) expansion of the capacity of intensive care unit (ICU) to clinical areas not previously used for critical care was necessary. We describe the global burden of COVID-19 admissions and the clinical and organizational characteristics associated with outcomes in critically ill COVID-19 patients. Methods: Multicenter, international, point prevalence study, including adult patients with SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) and a diagnosis of COVID-19 admitted to ICU between February 15th and May 15th, 2020. Results: 4994 patients from 280 ICUs in 46 countries were included. Included ICUs increased their total capacity from 4931 to 7630 beds, deploying personnel from other areas. Overall, 1986 (39.8%) patients were admitted to surge capacity beds. Invasive ventilation at admission was present in 2325 (46.5%) patients and was required during ICU stay in 85.8% of patients. 60-day mortality was 33.9% (IQR across units: 20%–50%) and ICU mortality 32.7%. Older age, invasive mechanical ventilation, and acute kidney injury (AKI) were associated with increased mortality. These associations were also confirmed specifically in mechanically ventilated patients. Admission to surge capacity beds was not associated with mortality, even after controlling for other factors. Conclusions: ICUs responded to the increase in COVID-19 patients by increasing bed availability and staff, admitting up to 40% of patients in surge capacity beds. Although mortality in this population was high, admission to a surge capacity bed was not associated with increased mortality. Older age, invasive mechanical ventilation, and AKI were identified as the strongest predictors of mortality
Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study
Background
Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave.
Methods
This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs.
Results
Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates.
Conclusions
Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility.
Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021)