47 research outputs found

    Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus

    Full text link
    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels. © The Author 2011. Published by Oxford University Press. All rights reserved.This work was supported by the Conselleria de Cultura, Educacio i Esport de la Generalitat Valenciana [GV/2007/213 and GV/2009/034].González Nebauer, S.; Renau Morata, B.; Guardiola, JL.; Molina Romero, RV. (2011). Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. Tree Physiology. 31(2):169-177. doi:10.1093/treephys/tpq103S16917731

    Regulatory circuitries of H2O2-responsive NAC transcription factors

    No full text

    The contribution of adenosine 5'-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers

    No full text
    The aim of this work was to investigate the extent to which starch synthesis in potato (Solanum tuberosum L.) tubers is controlled by the activity of ADPglucose pyrophosphorylase (EC 2.7.7.27; AGPase). In order to do this, fluxes of carbohydrate metabolism were measured in tubers that had reduced AGPase activity as a result of the expression of a cDNA encoding the B subunit in the antisense orientation. Reduction in AGPase activity led to a reduction in starch accumulation, and an increase in sucrose accumulation. The control coefficient of AGPase on starch accumulation in intact plants was estimated to be around 0.3. The fluxes of carbohydrate metabolism were measured in tuber discs from wild-type and transgenic plants by investigating the metabolism of [U-(14)C]glucose. In tuber discs, the control coefficient of AGPase over starch synthesis was estimated as 0.55, while the control coefficient of the enzyme over sucrose synthesis was -0.47. The values obtained suggest that AGPase activity exerts appreciable control over tuber metabolism in potato

    Antisense Repression of Both ADP-Glucose Pyrophosphorylase and Triose Phosphate Translocator Modifies Carbohydrate Partitioning in Potato Leaves.

    No full text
    Previous experiments have shown that carbohydrate partitioning in leaves of potato (Solanum tuberosum L.) plants can be modified by antisense repression of the triose phosphate translocator (TPT), favoring starch accumulation during the light period, or by leaf-specific antisense repression of ADP-glucose pyrophosphorylase (AGPase), reducing leaf starch content. These experiments showed that starch and sucrose synthesis can partially replace each other. To determine how leaf metabolism acclimates to an inhibition of both pathways, transgenic potato (S. tuberosum L. cv Desiree) plants, with a 30% reduction of the TPT achieved by antisense repression, were transformed with an antisense cDNA of the small subunit of AGPase, driven by the leaf-specific ST-LS1 promoter. These double-transformed plants were analyzed with respect to their carbohydrate metabolism, and starch accumulation was reduced in all lines of these plants. In one line with a 50% reduction of AGPase activity, the rate of CO2 assimilation was unaltered. In these plants the stromal level of triose phosphate was increased, enabling a high rate of triose phosphate export in spite of the reduction of the TPT protein by antisense repression. In a second line with a 95% reduction of AGPase activity, the amount of chlorophyll was significantly reduced as a consequence of the lowered triose phosphate utilization capacity
    corecore