2,778 research outputs found

    The influence of long-range hopping on ferromagnetism in the Hubbard model

    Full text link
    The phase diagram of the Hubbard model in an external magnetic field is examined by extrapolation of small-cluster exact-diagonalization calculations. Using a general expression for the hopping matrix elements (tij∼q∣i−j∣t_{ij}\sim q^{|i-j|}) the influence of long-range hopping (band asymmetry) on ferromagnetism in this model is studied. It is found that the long-range hopping (nonzero qq) stabilizes ferromagnetism in an external magnetic field for n>1n > 1. In the opposite limit n≤1n \leq 1 the fully polarized ferromagnetic state is generally suppressed with increasing qq. The critical value of magnetic field hh below which the ferromagnetic state becomes unstable is calculated numerically.Comment: 8 pages, 3 Postscript figures, Late

    Optical and magneto-optical response of a doped Mott insulator

    Get PDF
    We study the optical, Raman, and ac Hall response of the doped Mott insulator within the dynamical mean-field theory (d = infinity ) for strongly correlated electron systems. The occurrence of the isosbectic point in the optical conductivity is shown to be associated with the frequency dependence of the generalized charge susceptibility. We compute the Raman response, which probes the fluctuations of the "stress tensor," and show that the scattering is characterized by appreciable incoherent contributions. The calculated ac Hall constant and Hall angle also exhibit the isosbectic points. These results are also compared with those obtained for a non-FL metal in d = infinity. The role of low-energy coherence (FL) or incoherence (non-FL) in determining the finite frequency response of strongly correlated metals in d = infinity is discussed in detail. As an application of interest, we compute the dielectric figure-of-merit (DFOM), a quantity that is of potential importance for microwave device applications. We demonstrate explicitly that systems near the filling driven Mott transition might be good candidates in this respect, and discuss the influence of real-life factors on the DFOM.64

    Fully Frustrated Ising System on a 3D Simple Cubic Lattice: Revisited

    Full text link
    Using extensive Monte Carlo simulations, we clarify the critical behaviour of the 3 dimensional simple cubic Ising Fully Frustrated system. We find two transition temperatures and two long range ordered phases. Within the present numerical accuracy, the transition at higher temperature is found to be second order and we have extracted the standard critical exponent using finite size scaling method. On the other hand, the transition at lower temperature is found to be first order. It is argued that entropy plays a major role on determining the low temperature state.Comment: 14 pages 14 figures iop style include

    Temperature-dependent electronic structure and ferromagnetism in the d=oo Hubbard model studied by a modfied perturbation theory

    Full text link
    The infinite-dimensional Hubbard model is studied by means of a modified perturbation theory. The approach reduces to the iterative perturbation theory for weak coupling. It is exact in the atomic limit and correctly reproduces the dispersions and the weights of the Hubbard bands in the strong-coupling regime for arbitrary fillings. Results are presented for the hyper-cubic and an fcc-type lattice. For the latter we find ferromagnetic solutions. The filling-dependent Curie temperature is compared with the results of a recent Quantum Monte Carlo study.Comment: RevTeX, 5 pages, 6 eps figures included, Phys. Rev. B (in press), Ref. 16 correcte

    Cumulant expansion of the periodic Anderson model in infinite dimension

    Full text link
    The diagrammatic cumulant expansion for the periodic Anderson model with infinite Coulomb repulsion (U=∞U=\infty ) is considered here for an hypercubic lattice of infinite dimension (d=∞d=\infty ). The same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard model in the limit of d=∞d=\infty , are shown to be also valid for the periodic Anderson model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical and General (1997

    Magnetic and lattice polaron in Holstein-t-J model

    Full text link
    We investigate the interplay between the formation of lattice and magnetic polaron in the case of a single hole in the antiferromagnetic background. We present an exact analytical solution of the Holstein-t-J model in infinite dimensions. Ground state energy, electron-lattice correlation function, spin bag dimension as well as spectral properties are calculated. The magnetic and hole-lattice correlations sustain each other, i.e. the presence of antiferromagnetic correlations favors the formation of the lattice polaron at lower value of the electron-phonon coupling while the polaronic effect contributes to reduce the number of spin defects in the antiferromagnetic background. The crossover towards a spin-lattice small polaron region of the phase diagram becomes a discontinuous transition in the adiabatic limit.Comment: revtex, 8 eps figures included NEW version. Appendix with a full proof include

    Superconductivity in the Two-Band Hubbard Model in Infinite Dimensions

    Full text link
    We study a two-band Hubbard model in the limit of infinite dimensions, using a combination of analytical methods and Monte-Carlo techniques. The normal state is found to display various metal to insulators transitions as a function of doping and interaction strength. We derive self-consistent equations for the local Green's functions in the presence of superconducting long-range order, and extend previous algorithms to this case. We present direct numerical evidence that in a specific range of parameter space, the normal state is unstable against a superconducting state characterized by a strongly frequency dependent order-parameter.Comment: 12 pages (14 figures not included, available upon request), Latex, LPTENS Preprint 93/1

    The Concordance Cosmic Star Formation Rate: Implications from and for the Supernova Neutrino and Gamma Ray Backgrounds

    Full text link
    We constrain the Cosmic Star Formation Rate (CSFR) by requiring that massive stars produce the observed UV, optical, and IR light while at the same time not overproduce the Diffuse Supernova Neutrino Background as bounded by Super-Kamiokande. With the massive star component so constrained we then show that a reasonable choice of stellar Initial Mass Function and other parameters results in SNIa rates and iron yields in good agreement with data. In this way we define a `concordance' CSFR that predicts the optical SNII rate and the SNIa contribution to the MeV Cosmic Gamma-Ray Background. The CSFR constrained to reproduce these and other proxies of intermediate and massive star formation is more clearly delineated than if it were measured by any one technique and has the following testable consequences: (1) SNIa contribute only a small fraction of the MeV Cosmic Gamma-Ray Background, (2) massive star core-collapse is nearly always accompanied by a successful optical SNII, and (3) the Diffuse Supernova Neutrino Background is tantalizingly close to detectability.Comment: Improved discussion. Version accepted for publication in JCA

    Transport Properties of the One Dimensional Ferromagnetic Kondo Lattice Model : A Qualitative Approach to Oxide Manganites

    Full text link
    The transport properties of the ferromagnetic Kondo lattice model in one dimension are studied via bosonization methods. The antiferromagnetic fluctuations, which normally appear because of the RKKY interactions, are explicitly taken into account as a direct exchange between the ``core'' spins. It is shown that in the paramagnetic regime with the local antiferromagnetic fluctuations, the resistivity decays exponentially as the temperature increases while in the ferromagnetic regime the system is an almost perfect conductor. %A non-perturbative description of localized spin polarons %in the paramagnetic region is obtained. The effect of a weak applied field is discussed to be reduced to the case of the ferromagnetic state leading to band splitting. The qualitative relevance of the results for the problem of the Oxide Manganites is emphasized.Comment: 4 pages, REVTe

    The Charge Ordered State from Weak to Strong Coupling

    Full text link
    We apply the Dynamical Mean Field Theory to the problem of charge ordering. In the normal state as well as in the Charge Ordered (CO) state the existence of polarons, i.e. electrons strongly coupled to local lattice deformation, is associated to the qualitative properties of the Lattice Polarization Distribution Function (LPDF). At intermediate and strong coupling a CO state characterized by a certain amount of thermally activated defects arise from the spatial ordering of preexisting randomly distributed polarons. Properties of this particular CO state gives a qualitative understanding of the low frequency behavior of optical conductivity of NiNi perovskites.Comment: 4 pages, 3 figures, to be published in J. of Superconductivity (proceedings Stripes 98
    • …
    corecore