44 research outputs found

    EML4-ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7

    Get PDF
    EML4-ALK is an oncogenic fusion present in ∼5% non-small cell lung cancers. However, alternative breakpoints in the EML4 gene lead to distinct variants with different patient outcomes. Here, we show in cell models that EML4-ALK variant 3 (V3), which is linked to accelerated metastatic spread, causes microtubule stabilization, formation of extended cytoplasmic protrusions and increased cell migration. It also recruits the NEK9 and NEK7 kinase to microtubules via the N-terminal EML4 microtubule-binding region. Overexpression of wild-type EML4 as well as constitutive activation of NEK9 also perturb cell morphology and accelerate migration in a microtubule-dependent manner that requires the downstream kinase NEK7 but not ALK activity. Strikingly, elevated NEK9 expression is associated with reduced progression-free survival in EML4-ALK patients. Hence, we propose that EML4-ALK V3 promotes microtubule stabilization through NEK9 and NEK7 leading to increased cell migration. This represents a novel actionable pathway that could drive metastatic disease progression in EML4-ALK lung cancer

    NCF2/p67phox: A novel player in the anti-apoptotic functions of p53

    Get PDF

    Biological relevance of cell-in-cell in cancers

    No full text

    Novel targets and interaction partners of mutant p53 Gain-Of-Function

    No full text
    In many human cancers p53 expression is lost or a mutant p53 protein is expressed. Over the past 15 years it has become apparent that a large number of these mutant p53 proteins have lost wild type function, but more importantly have gained functions that promote tumorigenesis and drive chemo-resistance, invasion and metastasis. Many researchers have investigated the underlying mechanisms of these Gain-Of-Functions (GOFs) and it has become apparent that many of these functions are the result of mutant p53 hijacking other transcription factors. In this review, we summarize the latest research on p53 GOF and categorize these in light of the hallmarks of cancer as presented by Hannahan and Weinberg.</jats:p

    Mutant p53 in cancer: New functions and therapeutic opportunities

    No full text
    Many different types of cancer show a high incidence of TP53 mutations, leading to the expression of mutant p53 proteins. There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression. Understanding the functions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad range of cancer types

    P53 mutations in cancer

    No full text
    In the past fifteen years, it has become apparent that tumour-associated p53 mutations can provoke activities that are different to those resulting from simply loss of wild-type tumour-suppressing p53 function. Many of these mutant p53 proteins acquire oncogenic properties that enable them to promote invasion, metastasis, proliferation and cell survival. Here we highlight some of the emerging molecular mechanisms through which mutant p53 proteins can exert these oncogenic functions

    c-Met and other cell surface molecules: Interaction, activation and functional consequences

    No full text
    The c-Met receptor, also known as the HGF receptor, is one of the most studied tyrosine kinase receptors, yet its biological functions and activation mechanisms are still not fully understood. c-Met has been implicated in embryonic development and organogenesis, in tissue remodelling homeostasis and repair and in cancer metastasis. These functions are indicative of the many cellular processes in which the receptor plays a role, including cell motility, scattering, survival and proliferation. In the context of malignancy, sustained activation of c-Met leads to a signalling cascade involving a multitude of kinases that initiate an invasive and metastatic program. Many proteins can affect the activation of c-Met, including a variety of other cell surface and membrane-spanning molecules or receptors. Some cell surface molecules share structural homology with the c-Met extracellular domain and can activate c-Met via clustering through this domain (e.g., plexins), whereas other receptor tyrosine kinases can enhance c-Met activation and signalling through intracellular signalling cascades (e.g., EGFR). In this review, we provide an overview of c-Met interactions and crosstalk with partner molecules and the functional consequences of these interactions on c-Met activation and downstream signalling, c-Met intracellular localization/recycling and c-Met degradation
    corecore