31,080 research outputs found

    Detection of Carbon Monoxide within the Magellanic Bridge

    Get PDF
    The Mopra 22m and SEST 15m telescopes have been used to detect and partially map a region of 12CO(1-0) line emission within the Magellanic Bridge, a region lying between the Large and Small Magellanic Clouds. The emission appears to be embedded in a cloud of neutral hydrogen, and is in the vicinity of an IRAS source. The CO emission region is found to have a 60um/100um flux density ratio typical for 12CO(1-0) detections within the SMC, although it has a significantly lower 12CO brightness and velocity width. These suggest that the observed region is of a low metallicity, supporting earlier findings that the Magellanic Bridge is not as evolved as the SMC and Magellanic Stream, which are themselves of a lower metallicity than the Galaxy. Our observations, along with empirical models based on SMC observations, indicate that the radius of the detected CO region has an upper limit of ~16 pc. This detection is, to our knowledge, the first detection of CO emission from the Magellanic Bridge and is the only direct evidence of star formation through molecular cloud collapse in this region.Comment: 8 pages, 6 Figures. LaTeX. Accepted for publication by MNRA

    Neutron Star Kicks from Asymmetric Collapse

    Full text link
    Many neutron stars are observed to be moving with spatial velocities, in excess of 500km/s. A number of mechanisms have been proposed to give neutron stars these high velocities. One of the leading classes of models proposed invokes asymmetries in the core of a massive star just prior to collapse. These asymmetries grow during the collapse, causing the resultant supernova to also be asymmetric. As the ejecta is launched, it pushes off (or ``kicks'') the newly formed neutron star. This paper presents the first 3-dimensional supernova simulations of this process. The ejecta is not the only matter that kicks the newly-formed neutron star. Neutrinos also carry away momentum and the asymmetric collapse leads also to asymmetries in the neutrinos. However, the neutrino asymmetries tend to damp out the neutron star motions and even the most extreme asymmetric collapses presented here do not produce final neutron star velocities above 200km/s.Comment: 7 pages, 4 figures, see http://qso.lanl.gov/~clf/papers/kick.ps.gz for full figure

    Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse

    Full text link
    We have carried out an extensive set of two-dimensional, axisymmetric, purely-hydrodynamic calculations of rotational stellar core collapse with a realistic, finite-temperature nuclear equation of state and realistic massive star progenitor models. For each of the total number of 72 different simulations we performed, the gravitational wave signature was extracted via the quadrupole formula in the slow-motion, weak-field approximation. We investigate the consequences of variation in the initial ratio of rotational kinetic energy to gravitational potential energy and in the initial degree of differential rotation. Furthermore, we include in our model suite progenitors from recent evolutionary calculations that take into account the effects of rotation and magnetic torques. For each model, we calculate gravitational radiation wave forms, characteristic wave strain spectra, energy spectra, final rotational profiles, and total radiated energy. In addition, we compare our model signals with the anticipated sensitivities of the 1st- and 2nd-generation LIGO detectors coming on line. We find that most of our models are detectable by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan. 2004). Revised version: Corrected typos and minor mistakes in text and references. Minor additions to the text according to the referee's suggestions, conclusions unchange

    Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning

    Get PDF
    By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM) code PROMETHEUS, we study the properties of a convective oxygen burning shell in a SN 1987A progenitor star prior to collapse. The convection is too heterogeneous and dynamic to be well approximated by one-dimensional diffusion-like algorithms which have previously been used for this epoch. Qualitatively new phenomena are seen. The simulations are two-dimensional, with good resolution in radius and angle, and use a large (90-degree) slice centered at the equator. The microphysics and the initial model were carefully treated. Many of the qualitative features of previous multi-dimensional simulations of convection are seen, including large kinetic and acoustic energy fluxes, which are not accounted for by mixing length theory. Small but significant amounts of carbon-12 are mixed non-uniformly into the oxygen burning convection zone, resulting in hot spots of nuclear energy production which are more than an order of magnitude more energetic than the oxygen flame itself. Density perturbations (up to 8%) occur at the `edges' of the convective zone and are the result of gravity waves generated by interaction of penetrating flows into the stable region. Perturbations of temperature and electron fraction at the base of the convective zone are of sufficient magnitude to create angular inhomogeneities in explosive nucleosynthesis products, and need to be included in quantitative estimates of yields. Combined with the plume-like velocity structure arising from convection, the perturbations will contribute to the mixing of nickel-56 throughout supernovae envelopes. Runs of different resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see http://www.astrophysics.arizona.edu/movies.html Submitted to the Astrophysical Journa

    Evidence for O-atom exchange in the O(^1D) + N_2O reaction as the source of mass-independent isotopic fractionation in atmospheric N_2O

    Get PDF
    Recent experiments have shown that in the oxygen isotopic exchange reaction for O(^1D) + CO_2 the elastic channel is approximately 50% that of the inelastic channel [Perri et al., 2003]. We propose an analogous oxygen atom exchange reaction for the isoelectronic O(^1D) + N_2O system to explain the mass-independent isotopic fractionation (MIF) in atmospheric N_2O. We apply quantum chemical methods to compute the energetics of the potential energy surfaces on which the O(^1D) + N_2O reaction occurs. Preliminary modeling results indicate that oxygen isotopic exchange via O(^1D) + N_2O can account for the MIF oxygen anomaly if the oxygen atom isotopic exchange rate is 30–50% that of the total rate for the reactive channels

    ALMA observations of TiO2_2 around VY Canis Majoris

    Full text link
    Titanium dioxide, TiO2_2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO2_2 has been detected only in the complex environment of the red supergiant VY CMa. We aim to constrain the distribution and excitation of TiO2_2 around VY CMa in order to clarify its role in dust formation. We analyse spectra and channel maps for TiO2_2 extracted from ALMA science verification data. We detect 15 transitions of TiO2_2, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO2_2 emission likely traces gas exposed to the stellar radiation field. A roughly east-west oriented, accelerating bipolar-like structure is found, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. We find that a significant fraction of TiO2_2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa.Comment: Accepted for publication in Astronomy & Astrophysics, 25 pages, 20 figure

    Reply to comment by Röckmann and Kaiser on "Evidence for O-atom exchange in the O(^1D) + N_2O reaction as the source of mass-independent isotopic fractionation in atmospheric N_2O"

    Get PDF
    Based upon the authors’ questioning of the existence of the C_(2v) intermediate, we have reviewed our evidence for the existence of this state. It now appears that this state was in fact an artifact of our calculation [Yung et al., 2004], and was a saddle point rather than a true minimum. Our desire to provide a timely response to this criticism has kept us from determining exactly what minimum structure will be obtained by a full minimization at the level of theory employed. However, it is clear that the C_(2v) symmetry of the compound is broken in such a way that the two N-O bonds are no longer equivalent. We are grateful to the authors for helping us resolve this issue

    On the gamma-ray emission of Type Ia Supernovae

    Full text link
    A multi-dimension, time-dependent Monte Carlo code is used to compute sample gamma-ray spectra to explore whether unambiguous constraints could be obtained from gamma-ray observations of Type Ia supernovae. Both spherical and aspherical geometries are considered and it is shown that moderate departures from sphericity can produce viewing-angle effects that are at least as significant as those caused by the variation of key parameters in one-dimensional models. Thus gamma-ray data could in principle carry some geometrical information, and caution should be applied when discussing the value of gamma-ray data based only on one-dimensional explosion models. In light of the limited sensitivity of current gamma-ray observatories, the computed theoretical spectra are studied to revisit the issue of whether useful constraints could be obtained for moderately nearby objects. The most useful gamma-ray measurements are likely to be of the light curve and time-dependent hardness ratios, but sensitivity higher than currently available, particularly at relatively hard energies (~2-3 MeV), is desirable.Comment: 10 pages, 8 figures. Accepted by MNRAS. Minor changes to clarify discussion in Section

    Employing SAFT coarse grained force fields for the molecular simulation of thermophysical and transport properties of CO2 – n-alkane mixtures

    Get PDF
    We report an assessment of the predictive and correlative capability of the SAFT coarse-grained force field as applied to mixtures of CO2 with n-decane and n-hexadecane. We obtain the pure and cross-interaction parameters by matching simulations to experimental phase equilibrium behavior and transfer these parameters to predict shear viscosities. We apply both equilibrium (based on the Green–Kubo formulation) and nonequilibrium (based on the application of an external force to generate an explicit velocity field) algorithms. Single- and two-site models are explored for CO2, and while for volumetric properties both models provide good results, only the model that aligns with the molecular shape is found to be robust when describing highly asymmetric binary mixtures over wide ranges of temperature and pressure. While the models provide good quantitative predictions of viscosity, deviations among the algorithms and with experimental data are encountered for binary mixtures involving longer chain fluids, and in particular at high-pressure and low-temperature states
    • …
    corecore