31,080 research outputs found
Detection of Carbon Monoxide within the Magellanic Bridge
The Mopra 22m and SEST 15m telescopes have been used to detect and partially
map a region of 12CO(1-0) line emission within the Magellanic Bridge, a region
lying between the Large and Small Magellanic Clouds. The emission appears to be
embedded in a cloud of neutral hydrogen, and is in the vicinity of an IRAS
source. The CO emission region is found to have a 60um/100um flux density ratio
typical for 12CO(1-0) detections within the SMC, although it has a
significantly lower 12CO brightness and velocity width. These suggest that the
observed region is of a low metallicity, supporting earlier findings that the
Magellanic Bridge is not as evolved as the SMC and Magellanic Stream, which are
themselves of a lower metallicity than the Galaxy. Our observations, along with
empirical models based on SMC observations, indicate that the radius of the
detected CO region has an upper limit of ~16 pc. This detection is, to our
knowledge, the first detection of CO emission from the Magellanic Bridge and is
the only direct evidence of star formation through molecular cloud collapse in
this region.Comment: 8 pages, 6 Figures. LaTeX. Accepted for publication by MNRA
Neutron Star Kicks from Asymmetric Collapse
Many neutron stars are observed to be moving with spatial velocities, in
excess of 500km/s. A number of mechanisms have been proposed to give neutron
stars these high velocities. One of the leading classes of models proposed
invokes asymmetries in the core of a massive star just prior to collapse. These
asymmetries grow during the collapse, causing the resultant supernova to also
be asymmetric. As the ejecta is launched, it pushes off (or ``kicks'') the
newly formed neutron star. This paper presents the first 3-dimensional
supernova simulations of this process. The ejecta is not the only matter that
kicks the newly-formed neutron star. Neutrinos also carry away momentum and the
asymmetric collapse leads also to asymmetries in the neutrinos. However, the
neutrino asymmetries tend to damp out the neutron star motions and even the
most extreme asymmetric collapses presented here do not produce final neutron
star velocities above 200km/s.Comment: 7 pages, 4 figures, see http://qso.lanl.gov/~clf/papers/kick.ps.gz
for full figure
Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse
We have carried out an extensive set of two-dimensional, axisymmetric,
purely-hydrodynamic calculations of rotational stellar core collapse with a
realistic, finite-temperature nuclear equation of state and realistic massive
star progenitor models. For each of the total number of 72 different
simulations we performed, the gravitational wave signature was extracted via
the quadrupole formula in the slow-motion, weak-field approximation. We
investigate the consequences of variation in the initial ratio of rotational
kinetic energy to gravitational potential energy and in the initial degree of
differential rotation. Furthermore, we include in our model suite progenitors
from recent evolutionary calculations that take into account the effects of
rotation and magnetic torques. For each model, we calculate gravitational
radiation wave forms, characteristic wave strain spectra, energy spectra, final
rotational profiles, and total radiated energy. In addition, we compare our
model signals with the anticipated sensitivities of the 1st- and 2nd-generation
LIGO detectors coming on line. We find that most of our models are detectable
by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan.
2004). Revised version: Corrected typos and minor mistakes in text and
references. Minor additions to the text according to the referee's
suggestions, conclusions unchange
Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning
By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM)
code PROMETHEUS, we study the properties of a convective oxygen burning shell
in a SN 1987A progenitor star prior to collapse. The convection is too
heterogeneous and dynamic to be well approximated by one-dimensional
diffusion-like algorithms which have previously been used for this epoch.
Qualitatively new phenomena are seen.
The simulations are two-dimensional, with good resolution in radius and
angle, and use a large (90-degree) slice centered at the equator. The
microphysics and the initial model were carefully treated. Many of the
qualitative features of previous multi-dimensional simulations of convection
are seen, including large kinetic and acoustic energy fluxes, which are not
accounted for by mixing length theory. Small but significant amounts of
carbon-12 are mixed non-uniformly into the oxygen burning convection zone,
resulting in hot spots of nuclear energy production which are more than an
order of magnitude more energetic than the oxygen flame itself. Density
perturbations (up to 8%) occur at the `edges' of the convective zone and are
the result of gravity waves generated by interaction of penetrating flows into
the stable region. Perturbations of temperature and electron fraction at the
base of the convective zone are of sufficient magnitude to create angular
inhomogeneities in explosive nucleosynthesis products, and need to be included
in quantitative estimates of yields. Combined with the plume-like velocity
structure arising from convection, the perturbations will contribute to the
mixing of nickel-56 throughout supernovae envelopes. Runs of different
resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see
http://www.astrophysics.arizona.edu/movies.html Submitted to the
Astrophysical Journa
Evidence for O-atom exchange in the O(^1D) + N_2O reaction as the source of mass-independent isotopic fractionation in atmospheric N_2O
Recent experiments have shown that in the oxygen isotopic exchange reaction for O(^1D) + CO_2 the elastic channel is approximately 50% that of the inelastic channel [Perri et al., 2003]. We propose an analogous oxygen atom exchange reaction for the isoelectronic O(^1D) + N_2O system to explain the mass-independent isotopic fractionation (MIF) in atmospheric N_2O. We apply quantum chemical methods to compute the energetics of the potential energy surfaces on which the O(^1D) + N_2O reaction occurs. Preliminary modeling results indicate that oxygen isotopic exchange via O(^1D) + N_2O can account for the MIF oxygen anomaly if the oxygen atom isotopic exchange rate is 30–50% that of the total rate for the reactive channels
ALMA observations of TiO around VY Canis Majoris
Titanium dioxide, TiO, is a refractory species that could play a crucial
role in the dust-condensation sequence around oxygen-rich evolved stars. To
date, gas phase TiO has been detected only in the complex environment of
the red supergiant VY CMa. We aim to constrain the distribution and excitation
of TiO around VY CMa in order to clarify its role in dust formation. We
analyse spectra and channel maps for TiO extracted from ALMA science
verification data. We detect 15 transitions of TiO, and spatially resolve
the emission for the first time. The maps demonstrate a highly clumpy,
anisotropic outflow in which the TiO emission likely traces gas exposed to
the stellar radiation field. A roughly east-west oriented, accelerating
bipolar-like structure is found, of which the blue component runs into and
breaks up around a solid continuum component. A distinct tail to the south-west
is seen for some transitions, consistent with features seen in the optical and
near-infrared. We find that a significant fraction of TiO remains in the
gas phase outside the dust-formation zone and suggest that this species might
play only a minor role in the dust-condensation process around extreme
oxygen-rich evolved stars like VY CMa.Comment: Accepted for publication in Astronomy & Astrophysics, 25 pages, 20
figure
Reply to comment by Röckmann and Kaiser on "Evidence for O-atom exchange in the O(^1D) + N_2O reaction as the source of mass-independent isotopic fractionation in atmospheric N_2O"
Based upon the authors’ questioning of the existence
of the C_(2v) intermediate, we have reviewed our evidence for
the existence of this state. It now appears that this state was in fact an artifact of our calculation [Yung et al., 2004], and was a saddle point rather than a true minimum. Our desire to provide a timely response to this criticism has kept us from determining exactly what minimum structure will be obtained by a full minimization at the level of theory employed. However, it is clear that the C_(2v) symmetry of the compound is broken in such a way that the two N-O bonds are no longer equivalent. We are grateful to the authors for helping us resolve this issue
On the gamma-ray emission of Type Ia Supernovae
A multi-dimension, time-dependent Monte Carlo code is used to compute sample
gamma-ray spectra to explore whether unambiguous constraints could be obtained
from gamma-ray observations of Type Ia supernovae. Both spherical and
aspherical geometries are considered and it is shown that moderate departures
from sphericity can produce viewing-angle effects that are at least as
significant as those caused by the variation of key parameters in
one-dimensional models. Thus gamma-ray data could in principle carry some
geometrical information, and caution should be applied when discussing the
value of gamma-ray data based only on one-dimensional explosion models. In
light of the limited sensitivity of current gamma-ray observatories, the
computed theoretical spectra are studied to revisit the issue of whether useful
constraints could be obtained for moderately nearby objects. The most useful
gamma-ray measurements are likely to be of the light curve and time-dependent
hardness ratios, but sensitivity higher than currently available, particularly
at relatively hard energies (~2-3 MeV), is desirable.Comment: 10 pages, 8 figures. Accepted by MNRAS. Minor changes to clarify
discussion in Section
Employing SAFT coarse grained force fields for the molecular simulation of thermophysical and transport properties of CO2 – n-alkane mixtures
We report an assessment of the predictive and correlative capability of the SAFT coarse-grained force field as applied to mixtures of CO2 with n-decane and n-hexadecane. We obtain the pure and cross-interaction parameters by matching simulations to experimental phase equilibrium behavior and transfer these parameters to predict shear viscosities. We apply both equilibrium (based on the Green–Kubo formulation) and nonequilibrium (based on the application of an external force to generate an explicit velocity field) algorithms. Single- and two-site models are explored for CO2, and while for volumetric properties both models provide good results, only the model that aligns with the molecular shape is found to be robust when describing highly asymmetric binary mixtures over wide ranges of temperature and pressure. While the models provide good quantitative predictions of viscosity, deviations among the algorithms and with experimental data are encountered for binary mixtures involving longer chain fluids, and in particular at high-pressure and low-temperature states
- …