4,854 research outputs found

    Waveguide physical modeling of vocal tract acoustics: flexible formant bandwidth control from increased model dimensionality

    Get PDF
    Digital waveguide physical modeling is often used as an efficient representation of acoustical resonators such as the human vocal tract. Building on the basic one-dimensional (1-D) Kelly-Lochbaum tract model, various speech synthesis techniques demonstrate improvements to the wave scattering mechanisms in order to better approximate wave propagation in the complex vocal system. Some of these techniques are discussed in this paper, with particular reference to an alternative approach in the form of a two-dimensional waveguide mesh model. Emphasis is placed on its ability to produce vowel spectra similar to that which would be present in natural speech, and how it improves upon the 1-D model. Tract area function is accommodated as model width, rather than translated into acoustic impedance, and as such offers extra control as an additional bounding limit to the model. Results show that the two-dimensional (2-D) model introduces approximately linear control over formant bandwidths leading to attainable realistic values across a range of vowels. Similarly, the 2-D model allows for application of theoretical reflection values within the tract, which when applied to the 1-D model result in small formant bandwidths, and, hence, unnatural sounding synthesized vowels

    Real-time dynamic articulations in the 2-D waveguide mesh vocal tract model

    Get PDF
    Time domain articulatory vocal tract modeling in one-dimensional (1-D) is well established. Previous studies into two-dimensional (2-D) simulation of wave propagation in the vocal tract have shown it to present accurate static vowel synthesis. However, little has been done to demonstrate how such a model might accommodate the dynamic tract shape changes necessary in modeling speech. Two methods of applying the area function to the 2-D digital waveguide mesh vocal tract model are presented here. First, a method based on mapping the cross-sectional area onto the number of waveguides across the mesh, termed a widthwise mapping approach is detailed. Discontinuity problems associated with the dynamic manipulation of the model are highlighted. Second, a new method is examined that uses a static-shaped rectangular mesh with the area function translated into an impedance map which is then applied to each waveguide. Two approaches for constructing such a map are demonstrated; one using a linear impedance increase to model a constriction to the tract and another using a raised cosine function. Recommendations are made towards the use of the cosine method as it allows for a wider central propagational channel. It is also shown that this impedance mapping approach allows for stable dynamic shape changes and also permits a reduction in sampling frequency leading to real-time interaction with the model

    Intrinsic Electrical Transport Properties of Monolayer Silicene and MoS2 from First Principles

    Full text link
    The electron-phonon interaction and related transport properties are investigated in monolayer silicene and MoS2 by using a density functional theory calculation combined with a full-band Monte Carlo analysis. In the case of silicene, the results illustrate that the out-of-plane acoustic phonon mode may play the dominant role unlike its close relative - graphene. The small energy of this phonon mode, originating from the weak sp2 bonding between Si atoms, contributes to the high scattering rate and significant degradation in electron transport. In MoS2, the longitudinal acoustic phonons show the strongest interaction with electrons. The key factor in this material appears to be the Q valleys located between the {\Gamma} and K points in the first Brillouin zone as they introduce additional intervalley scattering. The analysis also reveals the potential impact of extrinsic screening by other carriers and/or adjacent materials. Subsequent decrease in the actual scattering rate can be drastic, warranting careful consideration. Finally, the effective deformation potential constants are extracted for all relevant intrinsic electron-phonon scattering processes in both materials

    Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    Get PDF
    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings

    Failure to learn from feedback underlies word learning difficulties in toddlers at risk for autism

    Get PDF
    Children’s assignment of novel words to nameless objects, over objects whose names they know (mutual exclusivity; ME) has been described as a driving force for vocabulary acquisition. Despite their ability to use ME to fast-map words (Preissler & Carey, 2005), children with autism show impaired language acquisition. We aimed to address this puzzle by building on studies showing that correct referent selection using ME does not lead to word learning unless ostensive feedback is provided on the child’s object choice (Horst & Samuelson, 2008). We found that although toddlers aged 2;0 at risk for autism can use ME to choose the correct referent of a word, they do not benefit from feedback for long-term retention of the word–object mapping. Further, their difficulty using feedback is associated with their smaller receptive vocabularies. We propose that difficulties learning from social feedback, not lexical principles, limits vocabulary building during development in children at risk for autism

    First Principles Analysis of Electron-Phonon Interaction in Graphene

    Full text link
    The electron-phonon interaction in monolayer graphene is investigated by using density functional perturbation theory. The results indicate that the electron-phonon interaction strength is of comparable magnitude for all four in-plane phonon branches and must be considered simultaneously. Moreover, the calculated scattering rates suggest an acoustic phonon contribution that is much weaker than previously thought, revealing the role of optical phonons even at low energies. Accordingly it is predicted, in good agreement with a recent measurement, that the intrinsic mobility of graphene may be more than an order of magnitude larger than the high values reported in suspended samples.Comment: 12 pages, 4 figure

    New perspectives on bioactivity of olive oil: evidence from animal models, human interventions and the use of urinary proteomic biomarkers

    Get PDF
    Olive oil (OO) is the primary source of fat in the Mediterranean diet and has been associated with longevity and a lower incidence of chronic diseases, particularly CHD. Cardioprotective effects of OO consumption have been widely related with improved lipoprotein profile, endothelial function and inflammation, linked to health claims of oleic acid and phenolic content of OO. With CVD being a leading cause of death worldwide, a review of the potential mechanisms underpinning the impact of OO in the prevention of disease is warranted. The current body of evidence relies on mechanistic studies involving animal and cell-based models, epidemiological studies of OO intake and risk factor, small- and large-scale human interventions, and the emerging use of novel biomarker techniques associated with disease risk. Although model systems are important for mechanistic research nutrition, methodologies and experimental designs with strong translational value are still lacking. The present review critically appraises the available evidence to date, with particular focus on emerging novel biomarkers for disease risk assessment. New perspectives on OO research are outlined, especially those with scope to clarify key mechanisms by which OO consumption exerts health benefits. The use of urinary proteomic biomarkers, as highly specific disease biomarkers, is highlighted towards a higher translational approach involving OO in nutritional recommendations

    Characterisation of a pucBA deletion mutant from Rhodopseudomonas palustris lacking all but the pucBAd genes

    Get PDF
    Rhodopseudomonas palustris is a species of purple photosynthetic bacteria that has a multigene family of puc genes that encode the alpha and beta apoproteins, which form the LH2 complexes. A genetic dissection strategy has been adopted in order to try and understand which spectroscopic form of LH2 these different genes produce. This paper presents a characterisation of one of the deletion mutants generated in this program, the pucBAd only mutant. This mutant produces an unusual spectroscopic form of LH2 that only has a single large NIR absorption band at 800 nm. Spectroscopic and pigment analyses on this complex suggest that it has basically a similar overall structure as that of the wild-type HL LH2 complex. The mutant has the unique phenotype where the mutant LH2 complex is only produced when cells are grown at LL. At HL the mutant only produces the LH1-RC core complex
    • …
    corecore