19 research outputs found
Coordinate Regulation of Lipid Metabolism by Novel Nuclear Receptor Partnerships
Mammalian nuclear receptors broadly influence metabolic fitness and serve as popular targets for developing drugs to treat cardiovascular disease, obesity, and diabetes. However, the molecular mechanisms and regulatory pathways that govern lipid metabolism remain poorly understood. We previously found that the Caenorhabditis elegans nuclear hormone receptor NHR-49 regulates multiple genes in the fatty acid beta-oxidation and desaturation pathways. Here, we identify additional NHR-49 targets that include sphingolipid processing and lipid remodeling genes. We show that NHR-49 regulates distinct subsets of its target genes by partnering with at least two other distinct nuclear receptors. Gene expression profiles suggest that NHR-49 partners with NHR-66 to regulate sphingolipid and lipid remodeling genes and with NHR-80 to regulate genes involved in fatty acid desaturation. In addition, although we did not detect a direct physical interaction between NHR-49 and NHR-13, we demonstrate that NHR-13 also regulates genes involved in the desaturase pathway. Consistent with this, gene knockouts of these receptors display a host of phenotypes that reflect their gene expression profile. Our data suggest that NHR-80 and NHR-13's modulation of NHR-49 regulated fatty acid desaturase genes contribute to the shortened lifespan phenotype of nhr-49 deletion mutant animals. In addition, we observed that nhr-49 animals had significantly altered mitochondrial morphology and function, and that distinct aspects of this phenotype can be ascribed to defects in NHR-66– and NHR-80–mediated activities. Identification of NHR-49's binding partners facilitates a fine-scale dissection of its myriad regulatory roles in C. elegans. Our findings also provide further insights into the functions of the mammalian lipid-sensing nuclear receptors HNF4α and PPARα
Changing outcomes following pelvic exenteration for locally advanced and recurrent rectal cancer
Background Pelvic exenteration for locally advanced rectal cancer (LARC) and locally recurrent rectal cancer (LRRC) is technically challenging but increasingly performed in specialist centres. The aim of this study was to compare outcomes of exenteration over time. Methods This was a multicentre retrospective study of patients who underwent exenteration for LARC and LRRC between 2004 and 2015. Surgical outcomes, including rate of bone resection, flap reconstruction, margin status and transfusion rates, were examined. Outcomes between higher- and lower-volume centres were also evaluated. Results Some 2472 patients underwent pelvic exenteration for LARC and LRRC across 26 institutions. For LARC, rates of bone resection or flap reconstruction increased from 2004 to 2015, from 3.5 to 12.8 per cent, and from 12.0 to 29.4 per cent respectively. Fewer units of intraoperative blood were transfused over this interval (median 4 to 2 units; P = 0.040). Subgroup analysis showed that bone resection and flap reconstruction rates increased in lower- and higher-volume centres. R0 resection rates significantly increased in low-volume centres but not in high-volume centres over time (low-volume: from 62.5 to 80.0 per cent, P = 0.001; high-volume: from 83.5 to 88.4 per cent, P = 0.660). For LRRC, no significant trends over time were observed for bone resection or flap reconstruction rates. The median number of units of intraoperative blood transfused decreased from 5 to 2.5 units (P < 0.001). R0 resection rates did not increase in either low-volume (from 51.7 to 60.4 per cent; P = 0.610) or higher-volume (from 48.6 to 65.5 per cent; P = 0.100) centres. No significant differences in length of hospital stay, 30-day complication, reintervention or mortality rates were observed over time. Conclusion Radical resection, bone resection and flap reconstruction rates were performed more frequently over time, while transfusion requirements decreased