5 research outputs found

    Electrochemical Characterization of Self-Assembled Monolayers on Gold Substrates Derived from Thermal Decomposition of Monolayer-Protected Cluster Films

    Get PDF
    Networked films of monolayer-protected clusters (MPCs), alkanethiolate-stabilized gold nanoparticles, can be thermally decomposed to form stable gold on glass substrates that are subsequently modified with self-assembled monolayers (SAMs) for use as modified electrodes. Electrochemical assessment of these SAM-modified gold substrates, including double-layer capacitance measurements, linear sweep desorption of the alkanethiolates, and diffusional redox probing, all show that SAMs formed on gold supports formed from thermolysis of MPC films possess substantially higher defect density compared to SAMs formed on traditional evaporated gold. The density of defects in the SAMs on thermolyzed gold is directly related to the strategies used to assemble the MPC film prior to thermolysis. Specifically, gold substrates formed from thermally decomposing MPC films formed with electrostatic bridges between carboxylic acid-modified MPCs and metal ion linkers are particularly sensitive to the degree of metal exposure during the assembly process. While specific metal dependence was observed, metal concentration within the MPC precursor film was determined to be a more significant factor. Specific MPC film linking strategies and pretreatment methods that emphasized lower metal exposure resulted in gold films that supported SAMs of lower defect density. The defect density of a SAM-modified electrode is shown to be critical in certain electrochemical experiments such as protein monolayer electrochemistry of adsorbed cytochrome c. While the thermal decomposition of nanoparticle film assemblies remains a viable and interesting technique for coating both flat and irregular shaped substrates, this study provides electrochemical assessment tools and tactics for determining and controlling SAM defect density on this type of gold structure, a property critical to their effective use in subsequent electrochemical applications

    Predicting the Loading of Virus-Like Particles with Fluorescent Proteins

    Get PDF
    The virus-like particle (VLP) of the Cowpea Chlorotic Mottle Virus (CCMV) has often been used to encapsulate foreign cargo. Here we show two different rational design approaches, covalent and noncovalent, for loading teal fluorescent proteins (TFP) into the VLP. The covalent loading approach allows us to gain control over capsid loading on a molecular level. The achieved loading control is used to accurately predict the loading of cargo into CCMV VLP. The effects of molecular confinement were compared for the differently loaded VLPs created with the covalent method. We see that the loading of more than 10 fluorescent proteins in the 18 nm internal cavity of the CCMV capsid gives rise to a maximum efficiency of homo-FRET between the loaded proteins, as measured by fluorescence anisotropy. This shows that already at low levels of VLP loading molecular crowding starts to play a role
    corecore