51 research outputs found

    Effect of channel width on human umbilical vein endothelial cell (HUVEC) culture in microfluidic channels

    Get PDF
    This report describes the development of endothelial cell (EC) cultivation devices with different channel widths (60 to 360 μm). Crucial features of the devices include even cell distribution along the channel, seeding reproducibility, and compatibility with microscopy and flow application. The main achievement of this work is the design of chips which allow reproducible HUVEC culture in narrow (&lt; 400 μm) channels.</p

    Spatial polarization modulators: distinguishing diffraction effects from spatial polarization modulation

    Get PDF
    Are we alone? In our quest to find life beyond Earth, we use our own planet to develop and verify new methods and techniques to remotely detect life. Our Life Signature Detection polarimeter (LSDpol), a snapshot full-Stokes spectropolarimeter to be deployed in the field and in space, looks for signals of life on Earth by sensing the linear and circular polarization states of reflected light. Examples of these biosignatures are linear polarization resulting from O2-A band and vegetation, e.g. the Red edge and the Green bump, as well as circular polarization resulting from the homochirality of biotic molecules. LSDpol is optimized for sensing circular polarization. To this end, LSDpol employs a spatial light modulator in the entrance slit of the spectrograph, a liquid-crystal quarter-wave retarder where the fast axis rotates as a function of slit position. The original design of LSDpol implemented a dual-beam spectropolarimeter by combining a quarter-wave plate with a polarization grating. Unfortunately, this design causes significant linear-to-circular cross-talk. In addition, it revealed spurious polarization modulation effects. Here, we present numerical simulations that illustrate how Fresnel diffraction effects can create these spurious modulations. We verified the simulations with accurate polarization state measurements in the lab using 100% linearly and circularly polarized light.Instrumentatio

    Spectropolarimetry of life: airborne measurements from a hot air balloon

    Full text link
    Does life exist outside our Solar System? A first step towards searching for life outside our Solar System is detecting life on Earth by using remote sensing applications. One powerful and unambiguous biosignature is the circular polarization resulting from the homochirality of biotic molecules and systems. We aim to investigate the possibility of identifying and characterizing life on Earth by using airborne spectropolarimetric observations from a hot air balloon during our field campaign in Switzerland, May 2022. In this work we present the optical-setup and the data obtained from aerial circular spectropolarimetric measurements of farmland, forests, lakes and urban sites. We make use of the well-calibrated FlyPol instrument that measures the fractionally induced circular polarization (V/IV/I) of (reflected) light with a sensitivity of <10−4<10^{-4}. The instrument operates in the visible spectrum, ranging from 400 to 900 nm. We demonstrate the possibility to distinguish biotic from abiotic features using circular polarization spectra and additional broadband linear polarization information. We review the performance of our optical-setup and discuss potential improvements. This sets the requirements on how to perform future airborne spectropolarimetric measurements of the Earth's surface features from several elevations.Comment: 13 pages, 10 figures, to be submitted in SPIE Proceedings 12214-

    Biosignatures of the Earth

    Get PDF
    ontext. Homochirality is a generic and unique property of life on Earth and is considered a universal and agnostic biosignature. Homochirality induces fractional circular polarization in the incident light that it reflects. Because this circularly polarized light can be sensed remotely, it can be one of the most compelling candidate biosignatures in life detection missions. While there are also other sources of circular polarization, these result in spectrally flat signals with lower magnitude. Additionally, circular polarization can be a valuable tool in Earth remote sensing because the circular polarization signal directly relates to vegetation physiology. Aims. While high-quality circular polarization measurements can be obtained in the laboratory and under semi-static conditions in the field, there has been a significant gap to more realistic remote sensing conditions. Methods. In this study, we present sensitive circular spectropolarimetric measurements of various landscape elements taken from a fast-moving helicopter. Results. We demonstrate that during flight, within mere seconds of measurements, we can differentiate (S∕N > 5) between grass fields, forests, and abiotic urban areas. Importantly, we show that with only nonzero circular polarization as a discriminant, photosynthetic organisms can even be measured in lakes. Conclusions. Circular spectropolarimetry can be a powerful technique to detect life beyond Earth, and we emphasize the potential of utilizing circular spectropolarimetry as a remote sensing tool to characterize and monitor in detail the vegetation physiology and terrain features of Earth itself

    Mitochondrial transplantation rescues neuronal cells from ferroptosis

    Get PDF
    Ferroptosis is a type of oxidative cell death that can occur in neurodegenerative diseases and involves damage to mitochondria. Previous studies demonstrated that preventing mitochondrial dysfunction can rescue cells from ferroptotic cell death. However, the complexity of mitochondrial dysfunction and the timing of therapeutic interventions make it difficult to develop an effective treatment strategy against ferroptosis in neurodegeneration conditions. In this study, we explored the use of mitochondrial transplantation as a novel therapeutic approach for preventing ferroptotic neuronal cell death. Our data showed that isolated exogenous mitochondria were incorporated into both healthy and ferroptotic immortalized hippocampal HT-22 cells and primary cortical neurons (PCN). The mitochondrial incorporation was accompanied by increased metabolic activity and cell survival through attenuating lipid peroxidation and mitochondrial superoxide production. Further, the function of mitochondrial complexes I, III and V activities contributed to the neuroprotective activity of exogenous mitochondria. Similarly, we have also showed the internalization of exogenous mitochondria in mouse PCN; these internalized mitochondria were found to effectively preserve the neuronal networks when challenged with ferroptotic stimuli. The administration of exogenous mitochondria into the axonal compartment of a two-compartment microfluidic device induced mitochondrial transportation to the cell body, which prevented fragmentation of the neuronal network in ferroptotic PCN. These findings suggest that mitochondria transplantation may be a promising therapeutic approach for protecting neuronal cells from ferroptotic cell death.</p

    Characterization of a hydrostatically driven cell seeding procedure using polymer microspheres

    No full text
    This paper describes how particles are distributed upon introduction into microchannels using a seeding technique based on hydrostatic flow. The distribution of particles and/or cells in microchannels is characterized in time, and an approach for ensuring a reproducible distribution which involves closing off reservoirs at defined times is presented.</p
    • …
    corecore