199 research outputs found

    Drosophila melanogaster as an Animal Model for the Study of Pseudomonas aeruginosa Biofilm Infections In Vivo

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo

    Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma

    Get PDF
    Abstract Background To compare computed tomography (CT) with co-registered positron emission tomography-computed tomography (PET-CT) as the basis for delineating gross tumor volume (GTV) in unresectable, locally advanced pancreatic carcinoma (LAPC). Methods Fourteen patients with unresectable LAPC had both CT and PET images acquired. For each patient, two three-dimensional conformal plans were made using the CT and PET-CT fusion data sets. We analyzed differences in treatment plans and doses of radiation to primary tumors and critical organs. Results Changes in GTV delineation were necessary in 5 patients based on PET-CT information. In these patients, the average increase in GTV was 29.7%, due to the incorporation of additional lymph node metastases and extension of the primary tumor beyond that defined by CT. For all patients, the GTVCT versus GTVPET-CT was 92.5 ± 32.3 cm3 versus 104.5 ± 32.6 cm3 (p = 0.009). Toxicity analysis revealed no clinically significant differences between two plans with regard to doses to critical organs. Conclusion Co-registration of PET and CT information in unresectable LAPC may improve the delineation of GTV and theoretically reduce the likelihood of geographic misses.</p

    Does delay in diagnosing colorectal cancer in symptomatic patients affect tumor stage and survival? A population-based observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosing colorectal cancer (CRC) at an early stage improves survival. To what extent any delay affects outcome once patients are symptomatic is still unclear.</p> <p>Our objectives were to evaluate the association between diagnostic delay and survival in symptomatic patients with early stage CRC and late stage CRC.</p> <p>Methods</p> <p>Prospective population-based observational study evaluating daily clinical practice in Northern Holland. Diagnostic delay was determined through questionnaire-interviews. Dukes' stage was classified into two groups: early stage (Dukes A or B) and late stage (Dukes C or D) cancer. Patients were followed up for 3.5 years after diagnosis.</p> <p>Results</p> <p>In total, 272 patients were available for analysis. Early stage CRC was present in 136 patients while 136 patients had late stage CRC. The mean total diagnostic delay (SE) was 31 (1.5) weeks in all CRC patients. No significant difference was observed in the mean total diagnostic delay in early versus late stage CRC (<it>p </it>= 0.27).</p> <p>In early stage CRC, no difference in survival was observed between patients with total diagnostic delay shorter and longer than the median (Kaplan-Meier, log-rank <it>p </it>= 0.93).</p> <p>In late stage CRC, patients with a diagnostic delay shorter than the median had a shorter survival than patients with a diagnostic delay longer than the median (log-rank <it>p </it>= 0.01). In the multivariate Cox regression model with survival as dependent variable and median delay, age, open access endoscopy, number and type of symptoms as independent variables, the odd's ratio for survival in patients with long delay (>median) versus short delay (≤median) was 1.8 (95% confidence interval (CI) 1.1 to 3.0; <it>p </it>= 0.01). Tumor-site was not associated with patient survival. When separating late stage CRC in Dukes C and Dukes D tumors, a shorter delay was associated with a shorter survival in Dukes D tumors only and not in Dukes C tumors.</p> <p>Conclusion</p> <p>In symptomatic CRC patients, a longer diagnostic and therapeutic delay in routine clinical practice was not associated with an adverse effect on survival. The time to CRC diagnosis and initiation of treatment did not differ between early stage and late stage colorectal cancer.</p

    Influences on pre-hospital delay in the diagnosis of colorectal cancer: a systematic review

    Get PDF
    Colorectal cancer is a major global health problem, with survival varying according to stage at diagnosis. Delayed diagnosis can result from patient, practitioner or hospital delay. This paper reports the results of a review of the factors influencing pre-hospital delay – the time between a patient first noticing a cancer symptom and presenting to primary care or between first presentation and referral to secondary care. A systematic methodology was applied, including extensive searches of the literature published from 1970 to 2003, systematic data extraction, quality assessment and narrative data synthesis. Fifty-four studies were included. Patients' non-recognition of symptom seriousness increased delay, as did symptom denial. Patient delay was greater for rectal than colon cancers and the presence of more serious symptoms, such as pain, reduced delay. There appears to be no relationship between delay and patients' age, sex or socioeconomic status. Initial misdiagnosis, inadequate examination and inaccurate investigations increased practitioner delay. Use of referral guidelines may reduce delay, although evidence is currently limited. No intervention studies were identified. If delayed diagnosis is to be reduced, there must be increased recognition of the significance of symptoms among patients, and development and evaluation of interventions that are designed to ensure appropriate diagnosis and examination by practitioners

    Immigrant status and increased risk of heart failure: the role of hypertension and life-style risk factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies from Sweden have reported association between immigrant status and incidence of cardiovascular diseases. The nature of this relationship is unclear. We investigated the relationship between immigrant status and risk of heart failure (HF) hospitalization in a population-based cohort, and to what extent this is mediated by hypertension and life-style risk factors. We also explored whether immigrant status was related to case-fatality after HF.</p> <p>Methods</p> <p>26,559 subjects without history of myocardial infarction (MI), stroke or HF from the community-based Malmö Diet and Cancer (MDC) cohort underwent a baseline examination during 1991-1996. Incidence of HF hospitalizations was monitored during a mean follow-up of 15 years.</p> <p>Results</p> <p>3,129 (11.8%) subjects were born outside Sweden. During follow-up, 764 subjects were hospitalized with HF as primary diagnosis, of whom 166 had an MI before or concurrent with the HF. After adjustment for potential confounding factors, the hazard ratios (HR) for foreign-born were 1.37 (95% CI: 1.08-1.73, <it>p </it>= 0.009) compared to native Swedes, for HF without previous MI. The results were similar in a secondary analysis without censoring at incident MI. There was a significant interaction (<it>p </it>< 0.001) between immigrant status and waist circumference (WC), and the increased HF risk was limited to immigrants with high WC. Although not significant foreign-born tended to have lower one-month and one-year mortality after HF.</p> <p>Conclusions</p> <p>Immigrant status was associated with long-term risk of HF hospitalization, independently of hypertension and several life-style risk factors. A significant interaction between WC and immigrant status on incident HF was observed.</p

    Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix

    Get PDF
    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications

    A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC

    Get PDF

    Receptor Complementation and Mutagenesis Reveal SR-BI as an Essential HCV Entry Factor and Functionally Imply Its Intra- and Extra-Cellular Domains

    Get PDF
    HCV entry into cells is a multi-step and slow process. It is believed that the initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading to uptake and cellular penetration of HCV via low-pH endosomes. Several reports have indicated that HDL promotes HCV entry through interaction with SR-BI. This pathway remains largely elusive, although it was shown that HDL neither associates with HCV particles nor modulates HCV binding to SR-BI. In contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed indirectly because of lack of cells in which functional complementation assays with mutant receptors could be performed. Here we identified for the first time two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma cells allowed unambiguous investigation of human SR-BI functions during HCV entry. By expressing different SR-BI mutants in either cell line, our results revealed features of SR-BI intracellular domains that influence HCV infectivity without affecting receptor binding and stimulation of HCV entry induced by HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain that, by altering HCV binding, inhibit entry. Finally, we characterized alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results highlight specific SR-BI determinants required during HCV entry and physiological lipid transfer functions hijacked by HCV to favor infection

    Barrier-to-Autointegration Factor Proteome Reveals Chromatin-Regulatory Partners

    Get PDF
    Nuclear lamin filaments and associated proteins form a nucleoskeletal (“lamina”) network required for transcription, replication, chromatin organization and epigenetic regulation in metazoans. Lamina defects cause human disease (“laminopathies”) and are linked to aging. Barrier-to-autointegration factor (BAF) is a mobile and essential component of the nuclear lamina that binds directly to histones, lamins and LEM-domain proteins, including the inner nuclear membrane protein emerin, and has roles in chromatin structure, mitosis and gene regulation. To understand BAF's mechanisms of action, BAF associated proteins were affinity-purified from HeLa cell nuclear lysates using BAF-conjugated beads, and identified by tandem mass spectrometry or independently identified and quantified using the iTRAQ method. We recovered A- and B-type lamins and core histones, all known to bind BAF directly, plus four human transcription factors (Requiem, NonO, p15, LEDGF), disease-linked proteins (e.g., Huntingtin, Treacle) and several proteins and enzymes that regulate chromatin. Association with endogenous BAF was independently validated by co-immunoprecipitation from HeLa cells for seven candidates including Requiem, poly(ADP-ribose) polymerase 1 (PARP1), retinoblastoma binding protein 4 (RBBP4), damage-specific DNA binding protein 1 (DDB1) and DDB2. Interestingly, endogenous BAF and emerin each associated with DDB2 and CUL4A in a UV- and time-dependent manner, suggesting BAF and emerin have dynamic roles in genome integrity and might help couple DNA damage responses to the nuclear lamina network. We conclude this proteome is a rich source of candidate partners for BAF and potentially also A- and B-type lamins, which may reveal how chromatin regulation and genome integrity are linked to nuclear structure
    corecore