12 research outputs found

    Electrolytic copper as cheap and effective catalyst for one-pot triazole synthesis

    Get PDF
    Electrolytic copper is a well-known form of pure, oxygen free copper that is used for industrial applications. In this work, the catalytic potential of this relatively cheap material was studied. The addition of less than 0.015 mol equivalent of copper powder effectively catalysed the one-pot synthesis of triazoles from a diverse range of organic halides and alkynes. Quantitative conversions in aqueous solvents can be achieved within minutes. The heterogenous nature of the catalyst afforded a low level of copper contamination in the products, thus meeting the rigorous criteria of the pharmaceutical industry

    Torrefaction and gasification of biomass for polygeneration: Production of biochar and producer gas at low load conditions

    Get PDF
    In this paper, a matter of biomass torrefaction and gasification is closely looked at from different points of view during low load and low equivalence ratio regime, defined as lambda = 0.08. Considering gas production, the hot gas efficiency of conversion (30%) and its energy content (4.14 MJ m(-3)) were not quite satisfying, however, this matter of fact was compensated by an interesting yield of biochar. This material was generated in 0.387 and 0.314 rates for torrefaction and torrefaction + gasification processes, respectively, which, in both cases, represents an attractive, alternative approach to the functional energy storage. It was determined that a CO2 offset of 721 kg and 660 kg could be achieved per 1 tonne of woodchips for gasification of raw woodchips and a 2-stage process with torrefaction and gasification, respectively. The measured data from both technological complexes were compared with the computational model, applying equilibrium reactions for gas components determination. In addition, the question of tar compounds contained within the producer gas, is investigated through GC-MS analysis on both qualitative and quantitative basis.Web of Science814413

    Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing

    Get PDF
    One of the processes that can serve to valorise low-quality biomass and organic waste is hydrothermal carbonization (HTC). It is a thermochemical process that transpires in the presence of water and uses heat to convert wet feedstocks into hydrochar (the solid product of hydrothermal carbonization). In the present experimental study, an improvement consisting of an increased hydrophobic character of HTC-treated biomass is demonstrated through the presentation of enhanced mechanical dewatering at different pressures due to HTC valorisation. As part of this work’s scope, flashing-off of low-quality steam is additionally explored, allowing for the recovery of the physical enthalpy of hot hydrochar slurry. The flashing-off vapours, apart from steam, contain condensable hydrocarbons. Accordingly, a membrane system that purifies such effluent and the subsequent recovery of chemical energy from the retentate are taken into account. Moreover, the biomethane potential is calculated for the condensates, presenting the possibility for the chemical energy recovery of the condensates.Web of Science1613art. no. 510

    Entrained-Flow Coal Gasification Process Simulation with the Emphasis on Empirical Char Conversion Models Optimization Procedure

    No full text
    Computational fluid dynamics (CFD) modeling of an entrained-flow reactor is demonstrated and compared with experimental data. The study is focused on char conversion modeling and its impact on gasification simulation results. An innovative procedure of optimizing input data to empirical char conversion kinetic-diffusion model is investigated, based on the complex carbon burnout kinetic model for oxidation (CBK/E) and gasification (CBK/G). The kinetics of the CBK/G model is determined using the data from char gasification experiments in a drop tube reactor. CFD simulations are performed for the laboratory-scale entrained-flow reactor at Brigham Young University for the bituminous coal. A substantial impact of applied kinetic parameters on the in-reactor gas composition and char conversion factor was observed. The effect was most considerable for the reduction zone, where gasification reactions dominate, although a non-negligible impact could also be observed in the flame zone. Based on the quantitative assessment of the incorporated optimization procedure, its application allowed to obtain one of the lowest errors of CO, H2, CO2, and H2O axial distribution with respect to the experimental data. The maximum errors for these species were equal to 18.48, 7.95, 10.15, and 20.22%, respectively, whereas the average errors were equal to 4.82, 5.47, 4.72, and 9.58%, respectively

    Assessment of biomass ignition potential and behavior using a cost-effective CFD approach

    No full text
    This paper utilizes a CFD approach to study the ignition of pulverized biomass particles. Ignition is a critical parameter in a reactor’s design and process efficiency, and a reliable and relatively quick method of its determination is a necessity. CFD is a well-established tool that has already proved credible in many combustion/gasification applications, and for that reason, its application in ignition-related studies should be paramount. In this research, an Eulerian-Lagrangian approach is used where key stages during biomass combustion such as inert heating, evaporation, devolatilization, gas-phase kinetics, char conversion, particle transport, and radiative transport are considered. The predictions of the model are verified against experimentally measured ignition data from the literature and are found to be in good agreement. The ignition delay is determined by monitoring the concentrations of OH (hydroxyl) and CH (methyl) radicals. It is concluded that using OH species as ignition indicator allowed reproducing the delay better for lower temperatures, whereas, for temperatures above 1600 K, CH species was found to be more accurate. The CFD approach was eventually found reasonable and relatively fast in ignition delay predictions enabling its wider use in industrial applications

    A review on biomass ignition : fundamental characteristics, measurements, and predictions

    No full text
    Exploiting biomass energy is a promising option to reduce CO2 emissions, owing to its renewability and carbon neutrality. The knowledge of biomass ignition becomes critical for processing fuels with regard to safety control and optimizing their combustion processes. Although there are many papers published in the field that investigate biomass combustion, less research effort was made to focus on the ignition behavior of biomass during the combustion processes. Therefore, this review work aims to investigate in detail the ignition characteristics of biomass dust fuels focusing on the most critical fuel properties and operating reactor conditions that affect ignition delay and ignition mode. The review also covers biomass combustion modeling methods focusing on the capabilities, similarities, and major drawbacks of the models in terms of ignition prediction

    Impact of Chemistry–Turbulence Interaction Modeling Approach on the CFD Simulations of Entrained Flow Coal Gasification

    No full text
    This paper examines the impact of different chemistry–turbulence interaction approaches on the accuracy of simulations of coal gasification in entrained flow reactors. Infinitely fast chemistry is compared with the eddy dissipation concept considering the influence of turbulence on chemical reactions. Additionally, ideal plug flow reactor study and perfectly stirred reactor study are carried out to estimate the accuracy of chosen simplified chemical kinetic schemes in comparison with two detailed mechanisms. The most accurate global approach and the detailed one are further implemented in the computational fluid dynamics (CFD) code. Special attention is paid to the water–gas shift reaction, which is found to have the key impact on the final gas composition. Three different reactors are examined: a pilot-scale Mitsubishi Heavy Industries reactor, a laboratory-scale reactor at Brigham Young University and a Conoco-Philips E-gas reactor. The aim of this research was to assess the impact of gas phase reaction model accuracy on simulations of the entrained flow gasification process. The investigation covers the following issues: impact of the choice of gas phase kinetic reactions mechanism as well as influence of the turbulence–chemistry interaction model. The advanced turbulence–chemistry models with the complex kinetic mechanisms showed the best agreement with the experimental data

    Development of a numerical method for the rapid prediction of ignition performance of biomass particles

    No full text
    Ignition is a critical step of the combustion process of biomass, due to its substantial impact on flame characteristics, process efficiency, and pollutant formation. This paper aims to develop a robust zero-dimensional ignition model as an effective tool to quickly estimate the ignition behaviour of biomass fuels. The numerical approach integrates an established devolatilization model with a well-tested mechanism for gas-phase reaction kinetics. The ignition delay time is determined from the sum of the devolatilization time and ignition time of the evolved gas species, as specified by the maximum in the OH radical concentration. The central premise of the modelling routine is that kinetics govern the ignition delay during biomass initial heating and thermochemical conversion which makes the elemental fuel composition the most important fuel property and heating rate the most important reactor condition. The predictions of the model are tested and verified against published experimentally measured ignition data for seven pulverized biomass fuels and are found to be in good agreement. The model for the first time can reasonably distinguish ignition behaviours of different biomass fuels, enabling its use in wider industrial applications

    Torrefaction and gasification of biomass for polygeneration: Production of biochar and producer gas at low load conditions

    Get PDF
    In this paper, a matter of biomass torrefaction and gasification is closely looked at from different points of view during low load and low equivalence ratio regime, defined as λ=0.08. Considering gas production, the hot gas efficiency of conversion (30%) and its energy content (4.14 MJ m−3) were not quite satisfying, however, this matter of fact was compensated by an interesting yield of biochar. This material was generated in 0.387 and 0.314 rates for torrefaction and torrefaction + gasification processes, respectively, which, in both cases, represents an attractive, alternative approach to the functional energy storage. It was determined that a CO2 offset of 721 kg and 660 kg could be achieved per 1 tonne of woodchips for gasification of raw woodchips and a 2-stage process with torrefaction and gasification, respectively. The measured data from both technological complexes were compared with the computational model, applying equilibrium reactions for gas components determination. In addition, the question of tar compounds contained within the producer gas, is investigated through GC–MS analysis on both qualitative and quantitative basis

    Kilku stopniowa utylizacja osadów ściekowych - biomasy odpadowej z wykorzystaniem karbonizacji, zgazowania

    No full text
    Problem opłacalnej energetycznie i ekonomicznie utylizacji biomasy odpadowej – w szczególności osadów ściekowych oraz innych zanieczyszczonych typów biomasy jest przedmiotem wielu analiz i badań. W przypadku porządku prawnego, panującego w Polsce, szczególne znaczenie ma fakt uznania osadu ściekowego za biomasę, potwierdzony przez nowelizację ustawy o Odnawialnych Źródłach Energii. Ponadto, Rozporządzenie Ministra Gospodarki z dn. 16/07/2015 w sprawie dopuszczania odpadów do składowania na składowiskach zabrania składowania ustabilizowanych osadów ściekowych (kod 19 08 05) o wartości opałowej większej niż 6 MJ/kg - w praktyce uniemożliwia to ich składowanie
    corecore