30 research outputs found
Induction of lymphokine-activated killer activity in rat splenocyte cultures: The importance of 2-mercaptoethanol and indomethacin
The role of 2-mercaptoethanol and indomethacin in the induction of lymphokine-activated killer (LAK) activity by interleukin-2 (IL-2) in rat splenocyte cultures was investigated. Spleens from 4-month-old male rats of five different strains were tested. Splenocytes were cultured for 3-5 days in the presence of IL-2 (1000 U/ml) and LAK activity was assessed by 4-h51Cr release assays with P815 and YAC-1 cells as targets. LAK activity could be induced by IL-2 in splenocytes from all rat strains, but only when 2-mercaptoethanol was present in the culture medium. Optimal LAK activity was induced when the 2-mercaptoethanol concentration in splenocyte cultures was at least 5 ÎĽM. Different rat strains showed differences in levels of in vitro induction of LAK activity. In the presence of 2-mercaptoethanol the level of LAK activity induced by IL-2 was high in BN and Lewis rats, intermediate in Wistar and Wag rats, and low in DZB rats. In the absence of 2-mercaptoethanol no or minimal LAK activity was induced. Furthermore we observed that addition of 50 ÎĽm indomethacin to the culture medium in the presence of 2-mercaptoethanol augmented the induction of LAK activity to some extent. In the absence of 2-mercaptoethanol, addition of indomethacin resulted only in low levels or no induction of LAK activity. We conclude that for optimal induction of LAK activity by IL-2 in rat splenocyte cultures 2-mercaptoethanol is essential, while indomethacin can only marginally further improve this induction
Genetic polymorphisms of RANTES, IL1-A, MCP-1 and TNF-A genes in patients with prostate cancer
<p>Abstract</p> <p>Background</p> <p>Inflammation has been implicated as an etiological factor in several human cancers, including prostate cancer. Allelic variants of the genes involved in inflammatory pathways are logical candidates as genetic determinants of prostate cancer risk. The purpose of this study was to investigate whether single nucleotide polymorphisms of genes that lead to increased levels of pro-inflammatory cytokines and chemokines are associated with an increased prostate cancer risk.</p> <p>Methods</p> <p>A case-control study design was used to test the association between prostate cancer risk and the polymorphisms <it>TNF-A</it>-308 A/G (rs 1800629), <it>RANTES</it>-403 G/A (rs 2107538), <it>IL1-A</it>-889 C/T (rs 1800587) and <it>MCP-1 </it>2518 G/A (rs 1024611) in 296 patients diagnosed with prostate cancer and in 311 healthy controls from the same area.</p> <p>Results</p> <p>Diagnosis of prostate cancer was significantly associated with <it>TNF-A </it>GA + AA genotype (OR, 1.61; 95% CI, 1.09–2.64) and <it>RANTES </it>GA + AA genotype (OR, 1.44; 95% CI, 1.09–2.38). A alleles in <it>TNF-A </it>and <it>RANTES </it>influenced prostate cancer susceptibility and acted independently of each other in these subjects. No epistatic effect was found for the combination of different polymorphisms studied. Finally, no overall association was found between prostate cancer risk and <it>IL1-A </it>or <it>MCP-1 </it>polymorphisms.</p> <p>Conclusion</p> <p>Our results and previously published findings on genes associated with innate immunity support the hypothesis that polymorphisms in proinflammatory genes may be important in prostate cancer development.</p
Induction of anti-tumor immunity by vaccination with dendritic cells pulsed with anti-CD44 IgG opsonized tumor cells
Due to the pivotal role that dendritic cells (DC) play in eliciting and maintaining functional anti-tumor T cell responses, these APC have been exploited against tumors. DC express several receptors for the Fc portion of IgG (FcÎł receptors) that mediate the internalization of antigen-IgG complexes and promote efficient MHC class I and II restricted antigen presentation. In this study, the efficacy of vaccination with DC pulsed with apoptotic B16 melanoma cells opsonized with an anti-CD44 IgG (B16-CD44) was explored. Immature bone marrow derived DC grown in vitro with IL-4 and GM-CSF were pulsed with B16-CD44. After 48Â h of pulsing, maturation of DC was demonstrated by production of IL-12 and upregulation of CD80 and CD40 expression. To test the efficacy of vaccination with DC+B16-CD44, mice were vaccinated subcutaneously Lymphocytes from mice vaccinated with DC+B16-CD44 produced IFN-Îł in response to B16 melanoma lysates as well as an MHC class I restricted B16 melanoma-associated peptide, indicating B16 specific CD8 T cell activation. Upon challenge with viable B16 cells, all mice vaccinated with DC alone developed tumor compared to 40% of mice vaccinated with DC+B16-CD44; 60% of the latter mice remained tumor free for at least 8Â months. In addition, established lung tumors and distant metastases were significantly reduced in mice treated with DC+B16-CD44. Lastly, delayed growth of established subcutaneous tumors was induced by combination therapy with anti-CD44 antibodies followed by DC injection. This study demonstrates the efficacy of targeting tumor antigens to DC via FcÎł receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45862/1/262_2005_Article_104.pd
Antitumor activity of recombinant interleukin 6 in mice.
IL-6 possesses multiple biologic activities that affect a broad range of cells including those directly involved in immune responses as well as cells important in the systemic response to infection or trauma. We now show that purified human rIL-6, when administered alone at relatively high doses that are comparable to therapeutic levels of IL-2, mediated substantial reductions in the number of pulmonary and hepatic micrometastases from four distinct syngeneic tumors. Unlike IL-2, IL-6 injections resulted in neither observable toxicity nor death of the treated mice at the dose regimens used. Host immunosuppression by sublethal total-body irradiation before the initiation of therapy prevented the IL-6 antitumor effect, thus suggesting that IL-6 acted through a radiosensitive host component rather than directly on the tumor itself. Moreover, the systemic administration of relatively low doses of IL-6 in combination with subtherapeutic doses of TNF to mice bearing an established weakly immunogenic, syngeneic tumor at a subcutaneous site resulted in marked tumor regression and cure rates. These studies represent the first demonstration of tumor regression mediated by recombinant IL-6 in vivo