211 research outputs found

    Permeability of the fish intestinal membrane to bulky chemicals

    Get PDF
    The ability to predict the environmental behavior of chemicals precisely is important for realizing more rational regulation. In this study, the bioaccumulation of nine chemicals of different molecular weights absorbed via the intestinal tract was evaluated in fish using the everted gut sac method. The amounts of chemicals that passed through the intestinal membrane after a 24-hr exposure were significantly decreased for chemicals with MW≥548 and Dmax min≥15.8 Å (or Dmax aver≥17.2 Å). These thresholds are consistent with those previously proposed in terms of MW (>800) and molecular size (Dmax min>15.6 Å or Dmax aver>17.1 Å) for the limit of permeable chemicals through the gill membrane. The results show that the same MW and Dmax criteria can be used to predict low bioaccumulation through both the gill membrane and the intestinal tract. These findings are helpful in reducing the need to conduct animal tests in environmental safety studies

    Criterion of molecular size to evaluate the bioaccumulation potential of chemicals in fish

    Get PDF
    To evaluate the bioaccumulation potential of chemicals in fish, a molecular-size descriptor, Dmax aver, has been used as a weight of evidence under the EU REACH. The Dmax aver value, however, is estimated on the basis of 3-D structures of possible stable conformers in a vacuum using OASIS software that requires expertise upon parameter input. We developed a method to calculate the 3-D conformers in water, which is more suitable for bioaccumulation potential evaluation in an aquatic environment, by introducing MD simulation. By examining the relationship of the calculated molecular size of 1665 chemicals with their reported BCF values, we found that 17.1 Å of Dmax aver or 15.6 Å of Dmax min was a threshold of molecular size in water to predict the low bioaccumulation (i.e., BCF<5000) of a chemical. Setting this threshold as a new standard would reduce the number of animal tests without compromising the quality of safety evaluation

    Psychiatric nurses’ observation techniques

    Get PDF
    The purpose of this study was to clarify characteristics of psychiatric nurses’ observation techniques for psychopathological symptoms. The subjects were 21 psychiatric nurses and 20 nursing students who had finished their practicum in psychiatric nursing. Using a non-contact eye-tracking analysis system, we compared quantitatively their radial motion while they were observing psychopathological symptoms of a schizophrenia simulation patient. The radial motion of them was recorded while they were observing a video of a simulated patient presenting psychopathological symptoms, and the recording was analyzed by the eye-tracking system. The investigator set the important observation areas and determined the sum of the fixation time and the number of fixations in the areas. Differences between psychiatric nurses and nursing students were tested using the Mann-Whitney U-test. The results revealed a significant difference in observation of the upper limbs area with a median of 7147.90 msec for nurses group and a median of 2447.54 msec for students group (U = 98.00, p = 0.01). The finding suggests that nurses tend to pay more attention to patient’s upper limbs to be cautious about possible violence and to find agitation caused by psychopathological symptoms, extrapyramidal adverse effects, and scars caused by self-mutilation

    Preoperative chemoradiotherapy for locally advanced low rectal cancer using intensity-modulated radiotherapy to spare the intestines: a single-institutional pilot trial

    Get PDF
    The irradiated volume of intestines is associated with gastrointestinal toxicity in preoperative chemoradiotherapy for rectal cancer. The current trial prospectively explored how much of the irradiated volume of intestines was reduced by intensity-modulated radiotherapy (IMRT) compared with 3-dimensional conformal radiotherapy (3DCRT) and whether IMRT might alleviate the acute gastrointestinal toxicity in this population. The treatment protocol encompassed preoperative chemoradiotherapy using IMRT plus surgery for patients with clinical T3–4, N0–2 low rectal cancer. IMRT delivered 45 Gy per 25 fractions for gross tumors, mesorectal and lateral lymph nodal regions, and tried to reduce the volume of intestines receiving 15 Gy (V₁₅ Gy) < 120 cc and V₄₅ Gy ≤ 0 cc, respectively, while keeping target coverage. S-1 and irinotecan were concurrently administered. Acute gastrointestinal toxicity, rates of clinical downstaging, sphincter preservation, local regional control (LRC) and overall survival (OS) were evaluated. Twelve enrolled patients completed the chemoradiotherapy protocol. The volumes of intestines receiving medium to high doses were reduced by the current IMRT protocol compared to 3DCRT; however, the predefined constraint of V15 Gy was met only in three patients. The rate of ≥ grade 2 gastrointestinal toxicity excluding anorectal symptoms was 17%. The rates of clinical downstaging, sphincter preservation, three-year LRC and OS were 75%, 92%, 92% and 92%, respectively. In conclusion, preoperative chemoradiotherapy using IMRT for this population might alleviate acute gastrointestinal toxicity, achieving high LRC and sphincter preservation; although further advancement is required to reduce the irradiated volume of intestines, especially those receiving low doses

    Electrochemical Assay for deoxyribonuclease I Activity

    Get PDF
    A thiolated oligonucleotide having three ferrocenes was immobilized on a gold electrode through the sulfur–gold linkage. This electrode showed a current response based on the redox reaction of the ferrocene moieties and this response was decreased after treatment with deoxyribonuclease I (DNase I), suggesting the disappearance of the ferrocene moieties on the electrode by the DNase I digestion. A linear correlation between i0 and i, which are current peaks before and after DNase I treatment, respectively, was observed and this slope was decreased with increase in the amount of DNase I. No current decrease was observed in the presence of EDTA or RNase A instead of DNase I. These results suggested that the current decrease responded specifically to the amount of DNase I and this electrode could be used for an electrochemical DNase I assay. Under the optimum conditions of DNase I digestion at 37 °C for 30 min, a quantitative analysis could be achieved in the range of 10−4–10−2 units/μl of DNase I

    Experiments on meteor burst communications in the Antarctic

    Get PDF
    Two kinds of experiments on the meteor burst communication(MBC) are now being conducted in the Antarctic to study the ability of MBC as a communication medium for data collection systems in that region. In the first one, continuous tone signal is transmitted from Zhongshan Station. The received signal at Syowa Station about 1400km apart is recorded and analyzed. This experiment is to study basic properties of the meteor burst channel in that high latitude region. From the data available thus far, we can see that 1) the sinusoidal daily variation in the meteor activity typical in mid and low latitude regions can not be clearly seen, 2) non-meteoric propagations frequently dominate the channel, etc. On the other hand, the second experiment is to estimate data throughput of a commercial MBC system in that region. A remote station at Zhongshan Station tries to transfer data packets each consists of 10 data words to the master station at Syowa Station. Data packets are generated with five min interval. We are now operating the system only five min in each ten min interval. About 60% of the generated data packets are constantly transferred to the master station within two hours delay

    Multi-institutional phase II study on the safety and efficacy of dynamic tumor tracking-stereotactic body radiotherapy for lung tumors

    Get PDF
    Background and purpose: This study aimed to evaluate the safety and efficacy of dynamic tumor tracking-stereotactic body radiotherapy (DTT-SBRT) for lung tumors. Materials and methods: Patients with cStage I primary lung cancer or metastatic lung cancer with an expected range of respiratory motion of ≥10 mm were eligible for the study. The prescribed dose was 50 Gy in four fractions. A gimbal-mounted linac was used for DTT-SBRT delivery. The primary endpoint was local control at 2 years. Results: Forty-eight patients from four institutions were enrolled in this study. Forty-two patients had primary non-small-cell lung cancer, and six had metastatic lung tumors. DTT-SBRT was delivered for 47 lesions in 47 patients with a median treatment time of 28 min per fraction. The median respiratory motion during the treatment was 13.7 mm (range: 4.5–28.1 mm). The motion-encompassing method was applied for the one remaining patient due to the poor correlation between the abdominal wall and tumor movement. The median follow-up period was 32.3 months, and the local control at 2 years was 95.2% (lower limit of the one-sided 85% confidence interval [CI]: 90.3%). The overall survival and progression-free survival at 2 years were 79.2% (95% CI: 64.7%–88.2%) and 75.0% (95% CI: 60.2%–85.0%), respectively. Grade 3 toxicity was observed in one patient (2.1%) with radiation pneumonitis. Grade 4 or 5 toxicity was not observed. Conclusion: DTT-SBRT achieved excellent local control with low incidences of severe toxicities in lung tumors with respiratory motion

    A Comparison of Physical vs. Nonphysical Wedge Modalities in Radiotherapy

    Get PDF
    This chapter discusses the clinical application and implementation of wedge techniques in radiation therapy. Coverage of the target region with a curative dose is critical for treating several cancer types; to that end, wedge filters are commonly used to improve dose uniformity to the target volume. Initially, wedges designed for this purpose were physical and were made of high-density materials such as lead or steel. Subsequently, nonphysical wedges were introduced; these improved the dose uniformity using computer systems in lieu of physical materials. As wedge systems evolve, however, they each continue to have their advantages and disadvantages. When using physical wedges, it is difficult to control the generation of secondary radiation resulting from the collision of the radiation beam with the wedge body; conversely, nonphysical wedges do not create any secondary radiation because there is no physical interference with the beam. On the other hand, nonphysical wedges are less suitable for treating moving tumors, such as those in the lung, and physical wedges have better dose coverage to the target volume than nonphysical wedges. This chapter aims to guide decision-making regarding the choice of wedge types in various clinical situations

    Development of AI-driven prediction models to realize real-time tumor tracking during radiotherapy

    Get PDF
    [Background] In infrared reflective (IR) marker-based hybrid real-time tumor tracking (RTTT), the internal target position is predicted with the positions of IR markers attached on the patient’s body surface using a prediction model. In this work, we developed two artificial intelligence (AI)-driven prediction models to improve RTTT radiotherapy, namely, a convolutional neural network (CNN) and an adaptive neuro-fuzzy inference system (ANFIS) model. The models aim to improve the accuracy in predicting three-dimensional tumor motion. [Methods] From patients whose respiration-induced motion of the tumor, indicated by the fiducial markers, exceeded 8 mm, 1079 logfiles of IR marker-based hybrid RTTT (IR Tracking) with the gimbal-head radiotherapy system were acquired and randomly divided into two datasets. All the included patients were breathing freely with more than four external IR markers. The historical dataset for the CNN model contained 1003 logfiles, while the remaining 76 logfiles complemented the evaluation dataset. The logfiles recorded the external IR marker positions at a frequency of 60 Hz and fiducial markers as surrogates for the detected target positions every 80-640 ms for 20-40 s. For each logfile in the evaluation dataset, the prediction models were trained based on the data in the first three quarters of the recording period. In the last quarter, the performance of the patient-specific prediction models was tested and evaluated. The overall performance of the AI-driven prediction models was ranked by the percentage of predicted target position within 2 mm of the detected target position. Moreover, the performance of the AI-driven models was compared to a regression prediction model currently implemented in gimbal-head radiotherapy systems. [Results] The percentage of the predicted target position within 2 mm of the detected target position was 95.1%, 92.6% and 85.6% for the CNN, ANFIS, and regression model, respectively. In the evaluation dataset, the CNN, ANFIS, and regression model performed best in 43, 28 and 5 logfiles, respectively. [Conclusions] The proposed AI-driven prediction models outperformed the regression prediction model, and the overall performance of the CNN model was slightly better than that of the ANFIS model on the evaluation dataset
    corecore