5 research outputs found

    Understanding Chat Messages for Sticker Recommendation in Messaging Apps

    Full text link
    Stickers are popularly used in messaging apps such as Hike to visually express a nuanced range of thoughts and utterances to convey exaggerated emotions. However, discovering the right sticker from a large and ever expanding pool of stickers while chatting can be cumbersome. In this paper, we describe a system for recommending stickers in real time as the user is typing based on the context of the conversation. We decompose the sticker recommendation (SR) problem into two steps. First, we predict the message that the user is likely to send in the chat. Second, we substitute the predicted message with an appropriate sticker. Majority of Hike's messages are in the form of text which is transliterated from users' native language to the Roman script. This leads to numerous orthographic variations of the same message and makes accurate message prediction challenging. To address this issue, we learn dense representations of chat messages employing character level convolution network in an unsupervised manner. We use them to cluster the messages that have the same meaning. In the subsequent steps, we predict the message cluster instead of the message. Our approach does not depend on human labelled data (except for validation), leading to fully automatic updation and tuning pipeline for the underlying models. We also propose a novel hybrid message prediction model, which can run with low latency on low-end phones that have severe computational limitations. Our described system has been deployed for more than 66 months and is being used by millions of users along with hundreds of thousands of expressive stickers

    Estimating Emotion Contagion on Social Media via Localized Diffusion in Dynamic Graphs

    Full text link
    We present a computational approach for estimating emotion contagion on social media networks. Built on a foundation of psychology literature, our approach estimates the degree to which the perceivers' emotional states (positive or negative) start to match those of the expressors, based on the latter's content. We use a combination of deep learning and social network analysis to model emotion contagion as a diffusion process in dynamic social network graphs, taking into consideration key aspects like causality, homophily, and interference. We evaluate our approach on user behavior data obtained from a popular social media platform for sharing short videos. We analyze the behavior of 48 users over a span of 8 weeks (over 200k audio-visual short posts analyzed) and estimate how contagious the users with whom they engage with are on social media. As per the theory of diffusion, we account for the videos a user watches during this time (inflow) and the daily engagements; liking, sharing, downloading or creating new videos (outflow) to estimate contagion. To validate our approach and analysis, we obtain human feedback on these 48 social media platform users with an online study by collecting responses of about 150 participants. We report users who interact with more number of creators on the platform are 12% less prone to contagion, and those who consume more content of `negative' sentiment are 23% more prone to contagion. We will publicly release our code upon acceptance
    corecore