765 research outputs found
Dissociation and Decay of Ultra-cold Sodium Molecules
The dissociation of ultracold molecules is studied by ramping an external
magnetic field through a Feshbach resonance. The observed dissociation energy
shows non-linear dependence on the ramp speed and directly yields the strength
of the atom-molecule coupling. In addition, inelastic molecule-molecule and
molecule-atom collisions are characterized
Formation of Quantum-Degenerate Sodium Molecules
Ultra-cold sodium molecules were produced from an atomic Bose-Einstein
condensate by ramping an applied magnetic field across a Feshbach resonance.
More than molecules were generated with a conversion efficiency of
4%. Using laser light resonant with an atomic transition, the remaining
atoms could be selectively removed, preventing fast collisional relaxation of
the molecules. Time-of-flight analysis of the pure molecular sample yielded an
instantaneous phase-space density greater than 20.Comment: 5 pages, 4 figures (final published version
Strong optical force induced by morphology dependent resonances
We consider the resonant optical force acting on a pair of transparent
microspheres by the excitation of the Morphology Dependent Resonance (MDR). The
bonding and anti-bonding modes of the MDR correspond to strong attractions and
repulsions respectively. The dependence of the force on separation and the role
of absorption are discussed. At resonance, the force can be enhanced by orders
of magnitude so that it will dominate over other relevant forces. We find that
a stable binding configuration can be induced by the resonant optical force.Comment: 4 pages, 4 figure
Coherent Molecular Optics using Sodium Dimers
Coherent molecular optics is performed using two-photon Bragg scattering.
Molecules were produced by sweeping an atomic Bose-Einstein condensate through
a Feshbach resonance. The spectral width of the molecular Bragg resonance
corresponded to an instantaneous temperature of 20 nK, indicating that atomic
coherence was transferred directly to the molecules. An autocorrelating
interference technique was used to observe the quadratic spatial dependence of
the phase of an expanding molecular cloud. Finally, atoms initially prepared in
two momentum states were observed to cross-pair with one another, forming
molecules in a third momentum state. This process is analogous to sum-frequency
generation in optics
Sodium Bose-Einstein Condensates in an Optical Lattice
The phase transition from a superfluid to a Mott insulator has been observed
in a Na Bose-Einstein condensate. A dye laser detuned nm red
of the Na SP transition was used to form the three
dimensional optical lattice. The heating effects of the small detuning as well
as the three-body decay processes constrained the timescale of the experiment.
Certain lattice detunings were found to induce a large loss of atoms. These
loss features were shown to be due to photoassociation of atoms to vibrational
levels in the Na state.Comment: Figures somewhat compromised due to size reductio
Efficient magneto-optical trapping of Yb atoms with a violet laser diode
We report the first efficient trapping of rare-earth Yb atoms with a
high-power violet laser diode (LD). An injection-locked violet LD with a 25 mW
frequency-stabilized output was used for the magneto-optical trapping (MOT) of
fermionic as well as bosonic Yb isotopes. A typical number of
atoms for Yb with a trap density of cm was
obtained. A 10 mW violet external-cavity LD (ECLD) was used for the
one-dimensional (1D) slowing of an effusive Yb atomic beam without a Zeeman
slower resulting in a 35-fold increase in the number of trapped atoms. The
overall characteristics of our compact violet MOT, e.g., the loss time of 1 s,
the loading time of 400 ms, and the cloud temperature of 0.7 mK, are comparable
to those in previously reported violet Yb MOTs, yet with a greatly reduced cost
and complexity of the experiment.Comment: 5 pages, 3 figures, 1 table, Phys. Rev. A (to be published
Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock
Motivated by the ideas of using cold alkaline earth atoms trapped in an
optical lattice for realization of optical atomic clocks, we investigate
theoretically the perturbative effects of atom-atom interactions on a clock
transition frequency. These interactions are mediated by the dipole fields
associated with the optically excited atoms. We predict resonance-like features
in the frequency shifts when constructive interference among atomic dipoles
occur. We theoretically demonstrate that by fine-tuning the coherent
dipole-dipole couplings in appropriately designed lattice geometries, the
undesirable frequency shifts can be greatly suppressed.Comment: 14 pages, 4 figure
Highly efficient synthesis of the tricyclic core of Taxol by cascade metathesis
An efficient enantioselective synthesis of the ABC tricyclic core of the anticancer drug Taxol is reported. The key step of this synthesis is a cascade metathesis reaction, which leads in one operation to the required tricycle if appropriate fine-tuning of the dienyne precursor is performed
- âŠ