626 research outputs found

    Coherent Molecular Optics using Sodium Dimers

    Full text link
    Coherent molecular optics is performed using two-photon Bragg scattering. Molecules were produced by sweeping an atomic Bose-Einstein condensate through a Feshbach resonance. The spectral width of the molecular Bragg resonance corresponded to an instantaneous temperature of 20 nK, indicating that atomic coherence was transferred directly to the molecules. An autocorrelating interference technique was used to observe the quadratic spatial dependence of the phase of an expanding molecular cloud. Finally, atoms initially prepared in two momentum states were observed to cross-pair with one another, forming molecules in a third momentum state. This process is analogous to sum-frequency generation in optics

    Production of cold molecules via magnetically tunable Feshbach resonances

    Full text link
    Magnetically tunable Feshbach resonances were employed to associate cold diatomic molecules in a series of experiments involving both atomic Bose as well as two spin component Fermi gases. This review illustrates theoretical concepts of both the particular nature of the highly excited Feshbach molecules produced and the techniques for their association from unbound atom pairs. Coupled channels theory provides the rigorous formulation of the microscopic physics of Feshbach resonances in cold gases. Concepts of dressed versus bare energy states, universal properties of Feshbach molecules, as well as the classification in terms of entrance- and closed-channel dominated resonances are introduced on the basis of practical two-channel approaches. Their significance is illustrated for several experimental observations, such as binding energies and lifetimes with respect to collisional relaxation. Molecular association and dissociation are discussed in the context of techniques involving linear magnetic field sweeps in cold Bose and Fermi gases as well as pulse sequences leading to Ramsey-type interference fringes. Their descriptions in terms of Landau-Zener, two-level mean field as well as beyond mean field approaches are reviewed in detail, including the associated ranges of validity.Comment: 50 pages, 26 figures, to be published in Reviews of Modern Physics, final version with updated reference

    Coherence of Spin-Polarized Fermions Interacting with a Clock Laser in a Stark-Shift-Free Optical Lattice

    Full text link
    We investigated the coherence of spin-polarized ^{87}Sr atoms trapped in a light-shift-free one-dimensional optical lattice during their interaction with a clock laser on the ^1S_0-^3P_0 transition. Collapses and revivals appeared for more than 50 Rabi cycles, attributed to the thermal distribution of discrete vibrational states in the lattice potential. The population oscillation in the clock states lasted more than 1s, demonstrating high immunity from decoherence. This long atomic coherence suggests the feasibility of Pauli blocking of collisions in optical clock excitation.Comment: 10 pages, 4 figure

    Entangling the free motion of a particle pair: an experimental scenario

    Full text link
    The concept of dissociation-time entanglement provides a means of manifesting non-classical correlations in the motional state of two counter-propagating atoms. In this article, we discuss in detail the requirements for a specific experimental implementation, which is based on the Feshbach dissociation of a molecular Bose-Einstein condensate of fermionic lithium. A sequence of two magnetic field pulses serves to delocalize both of the dissociation products into a superposition of consecutive wave packets, which are separated by a macroscopic distance. This allows to address them separately in a switched Mach-Zehnder configuration, permitting to conduct a Bell experiment with simple position measurements. We analyze the expected form of the two-particle wave function in a concrete experimental setup that uses lasers as atom guides. Assuming viable experimental parameters the setup is shown to be capable of violating a Bell inequality.Comment: 9 pages, 3 figures; corresponds to published versio

    Yeast Methylotrophy and Autophagy in a Methanol-Oscillating Environment on Growing Arabidopsis thaliana Leaves

    Get PDF
    The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes in the methanol assimilation pathway, but not formaldehyde dissimilation or anti-oxidizing enzymes, were necessary for yeast proliferation at the phyllosphere. Furthermore, both peroxisome assembly and pexophagy, a selective autophagy pathway that degrades peroxisomes, were necessary for phyllospheric proliferation. Thus, the present study sheds light on the life cycle and physiology of yeast in the natural environment at both the molecular and cellular levels
    corecore