151 research outputs found

    HUNK Phosphorylates Rubicon to Support Autophagy

    Get PDF
    Background: Autophagy is a catabolic cellular recycling pathway that is essential for maintaining intracellular homeostasis. Autophagosome formation is achieved via the coordination of the Beclin-1 protein complex. Rubicon is a Beclin-1 associated protein that suppresses autophagy by impairing the activity of the class III PI3K, Vps34. However, very little is known about the molecular mechanisms that regulate Rubicon function. Methods: In this study, co-immunoprecipitation and kinase assays were used to investigate the ability of Hormonally Upregulated Neu-associated Kinase (HUNK) to bind to and phosphorylate Rubicon. LC3B was monitored by immunofluorescence and immunoblotting to determine whether phosphorylation of Rubicon by HUNK controls the autophagy suppressive function of Rubicon. Results: Findings from this study identify Rubicon as a novel substrate of HUNK and show that phosphorylation of Rubicon inhibits its function, promoting autophagy

    Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer

    Full text link
    Abstract Background Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. Methods Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. Results Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. Conclusions These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.https://deepblue.lib.umich.edu/bitstream/2027.42/149184/1/12885_2019_Article_5667.pd

    Anti-Bacterial Effects of Poly-N-Acetyl-Glucosamine Nanofibers in Cutaneous Wound Healing: Requirement for Akt1

    Get PDF
    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine nanofibers (sNAG) results in increased kinetics of wound closure in diabetic animal models, which is due in part to increased expression of several cytokines, growth factors, and innate immune activation. Defensins are also important for wound healing and anti-microbial activities. Therefore, we tested whether sNAG nanofibers induce defensin expression resulting in bacterial clearance.The role of sNAG in defensin expression was examined using immunofluoresence microscopy, pharmacological inhibition, and shRNA knockdown in vitro. The ability of sNAG treatment to induce defensin expression and bacterial clearance in WT and AKT1-/- mice was carried out using immunofluoresent microscopy and tissue gram staining. Neutralization, using an antibody directed against β-defensin 3, was utilized to determine if the antimicrobial properties of sNAG are dependent on the induction of defensin expression.sNAG treatment causes increased expression of both α- and β-type defensins in endothelial cells and β-type defensins in keratinocytes. Pharmacological inhibition and shRNA knockdown implicates Akt1 in sNAG-dependent defensin expression in vitro, an activity also shown in an in vivo wound healing model. Importantly, sNAG treatment results in increased kinetics of wound closure in wild type animals. sNAG treatment decreases bacterial infection of cutaneous wounds infected with Staphylococcus aureus in wild type control animals but not in similarly treated Akt1 null animals. Furthermore, sNAG treatment of S. aureus infected wounds show an increased expression of β-defensin 3 which is required for sNAG-dependent bacterial clearance. Our findings suggest that Akt1 is involved in the regulation of defensin expression and the innate immune response important for bacterial clearance. Moreover, these findings support the use of sNAG nanofibers as a novel method for enhancing wound closure while simultaneously decreasing wound infection

    O2-sensing signal cascade: clamping of O2 respiration, reduced ATP utilization, and inducible fumarate respiration

    No full text
    These studies explore the consequences of activating the prolyl hydroxylase (PHD) O2-sensing pathway in spontaneously twitching neonatal cardiomyocytes. Full activation of the PHD pathway was achieved using the broad-spectrum PHD inhibitor (PHI) dimethyloxaloylglycine (DMOG). PHI treatment of cardiomyocytes caused an 85% decrease in O2 consumption and a 300% increase in lactic acid production under basal conditions. This indicates a ∼75% decrease in ATP turnover rate, inasmuch as the increased ATP generation by glycolysis is inadequate to compensate for the lower respiration. To determine the extent to which decreased ATP turnover underlies the suppressed O2 consumption, mitochondria were uncoupled with 2,4-dinitrophenol. We were surprised to find that 2,4-dinitrophenol failed to increase O2 consumption by PHI-treated cells, indicating that electron transport chain activity, rather than ATP turnover rate, limits respiration in PHI-treated cardiomyocytes. Silencing of hypoxia-inducible factor-1α (HIF-1α) expression restored the ability of uncoupled PHI-treated myocytes to increase O2 consumption; however, basal O2 uptake rates remained low because of the unabated suppression of cellular ATP consumption. Thus it appears that respiration is actively “clamped” through an HIF-dependent mechanism, whereas HIF-independent mechanisms are responsible for downregulation of ATP consumption. In addition, we find that PHD pathway activation enables mitochondria to utilize fumarate as a terminal electron acceptor when cytochrome c oxidase is inactive. The source of fumarate for this unusual respiration is derived from aspartate via the purine nucleotide cycle. In sum, these studies show that the O2-sensing pathway is sufficient to actively “clamp” O2 consumption and independently suppress cellular ATP consumption. The PHD pathway also enables the mitochondria to utilize fumarate for respiration

    pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1.

    No full text
    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing
    corecore