67 research outputs found

    Expectation-Aware Planning: A Unifying Framework for Synthesizing and Executing Self-Explaining Plans for Human-Aware Planning

    Full text link
    In this work, we present a new planning formalism called Expectation-Aware planning for decision making with humans in the loop where the human's expectations about an agent may differ from the agent's own model. We show how this formulation allows agents to not only leverage existing strategies for handling model differences but can also exhibit novel behaviors that are generated through the combination of these different strategies. Our formulation also reveals a deep connection to existing approaches in epistemic planning. Specifically, we show how we can leverage classical planning compilations for epistemic planning to solve Expectation-Aware planning problems. To the best of our knowledge, the proposed formulation is the first complete solution to decision-making in the presence of diverging user expectations that is amenable to a classical planning compilation while successfully combining previous works on explanation and explicability. We empirically show how our approach provides a computational advantage over existing approximate approaches that unnecessarily try to search in the space of models while also failing to facilitate the full gamut of behaviors enabled by our framework

    Learning Neural-Symbolic Descriptive Planning Models via Cube-Space Priors: The Voyage Home (to STRIPS)

    Full text link
    We achieved a new milestone in the difficult task of enabling agents to learn about their environment autonomously. Our neuro-symbolic architecture is trained end-to-end to produce a succinct and effective discrete state transition model from images alone. Our target representation (the Planning Domain Definition Language) is already in a form that off-the-shelf solvers can consume, and opens the door to the rich array of modern heuristic search capabilities. We demonstrate how the sophisticated innate prior we place on the learning process significantly reduces the complexity of the learned representation, and reveals a connection to the graph-theoretic notion of "cube-like graphs", thus opening the door to a deeper understanding of the ideal properties for learned symbolic representations. We show that the powerful domain-independent heuristics allow our system to solve visual 15-Puzzle instances which are beyond the reach of blind search, without resorting to the Reinforcement Learning approach that requires a huge amount of training on the domain-dependent reward information.Comment: Accepted in IJCAI 2020 main track (accept ratio 12.6%). The prequel of this paper, "The Search for STRIPS", can be found here: arXiv:1912.05492 . (update, 2020/08/11) We expanded the related work sectio

    Stable Model Counting and Its Application in Probabilistic Logic Programming

    Full text link
    Model counting is the problem of computing the number of models that satisfy a given propositional theory. It has recently been applied to solving inference tasks in probabilistic logic programming, where the goal is to compute the probability of given queries being true provided a set of mutually independent random variables, a model (a logic program) and some evidence. The core of solving this inference task involves translating the logic program to a propositional theory and using a model counter. In this paper, we show that for some problems that involve inductive definitions like reachability in a graph, the translation of logic programs to SAT can be expensive for the purpose of solving inference tasks. For such problems, direct implementation of stable model semantics allows for more efficient solving. We present two implementation techniques, based on unfounded set detection, that extend a propositional model counter to a stable model counter. Our experiments show that for particular problems, our approach can outperform a state-of-the-art probabilistic logic programming solver by several orders of magnitude in terms of running time and space requirements, and can solve instances of significantly larger sizes on which the current solver runs out of time or memory.Comment: Accepted in AAAI, 201

    Characterizing and Computing All Delete-Relaxed Dead-ends

    Get PDF
    Dead-end detection is a key challenge in automated planning, and it is rapidly growing in popularity. Effective dead-end detection techniques can have a large impact on the strength of a planner, and so the effective computation of dead-ends is central to many planning approaches. One of the better understood techniques for detecting dead-ends is to focus on the delete relaxation of a planning problem, where dead-end detection is a polynomial-time operation. In this work, we provide a logical characterization for not just a single dead-end, but for every delete-relaxed dead-end in a planning problem. With a logical representation in hand, one could compile the representation into a form amenable to effective reasoning. We lay the ground-work for this larger vision and provide a preliminary evaluation to this en

    Egocentric Planning for Scalable Embodied Task Achievement

    Full text link
    Embodied agents face significant challenges when tasked with performing actions in diverse environments, particularly in generalizing across object types and executing suitable actions to accomplish tasks. Furthermore, agents should exhibit robustness, minimizing the execution of illegal actions. In this work, we present Egocentric Planning, an innovative approach that combines symbolic planning and Object-oriented POMDPs to solve tasks in complex environments, harnessing existing models for visual perception and natural language processing. We evaluated our approach in ALFRED, a simulated environment designed for domestic tasks, and demonstrated its high scalability, achieving an impressive 36.07% unseen success rate in the ALFRED benchmark and winning the ALFRED challenge at CVPR Embodied AI workshop. Our method requires reliable perception and the specification or learning of a symbolic description of the preconditions and effects of the agent's actions, as well as what object types reveal information about others. It is capable of naturally scaling to solve new tasks beyond ALFRED, as long as they can be solved using the available skills. This work offers a solid baseline for studying end-to-end and hybrid methods that aim to generalize to new tasks, including recent approaches relying on LLMs, but often struggle to scale to long sequences of actions or produce robust plans for novel tasks

    Planutils: Bringing Planning to the Masses

    Get PDF
    PLANUTILS is a general library for setting up Linux-based environments for developing, running, and evaluating planners. Over the last decades, the planning community has produced countless solvers for various planning formalisms, as well as many other tools to help the planning practitioner. From state-of-the-art planners, over validators, to parsing libraries, the planning ecosystem has grown quite large. In the demo, we highlight an effort that aims to unify this ecosystem and make it seamless for users to get started with what the ICAPS community has to offer

    Classical Planning in Deep Latent Space

    Full text link
    Current domain-independent, classical planners require symbolic models of the problem domain and instance as input, resulting in a knowledge acquisition bottleneck. Meanwhile, although deep learning has achieved significant success in many fields, the knowledge is encoded in a subsymbolic representation which is incompatible with symbolic systems such as planners. We propose Latplan, an unsupervised architecture combining deep learning and classical planning. Given only an unlabeled set of image pairs showing a subset of transitions allowed in the environment (training inputs), Latplan learns a complete propositional PDDL action model of the environment. Later, when a pair of images representing the initial and the goal states (planning inputs) is given, Latplan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution. We evaluate Latplan using image-based versions of 6 planning domains: 8-puzzle, 15-Puzzle, Blocksworld, Sokoban and Two variations of LightsOut.Comment: Under review at Journal of Artificial Intelligence Research (JAIR
    • …
    corecore