3 research outputs found
Dry matter yields and hydrological properties of three perennial grasses of a semi-arid environment in East Africa
Enteropogon macrostachyus (Bush rye), Cenchrus ciliaris L. (African foxtail grass) and Eragrostis superba Peyr (Maasai love grass) are important perennial rangeland grasses in Kenya. They provide an important source of forage for domestic livestock and wild ungulates. These grasses have been used extensively to rehabilitate denuded patches in semi-arid environment of Kenya. This study investigated the dry matter yields and hydrological properties of the three grasses under simulated rainfall at three phenological stages; early growth, elongation and reproduction. Laboratory seed viability tests were also done. Hydrological properties of the three grasses were estimated using a Kamphorst rainfall simulator. Results showed that there was a significant difference (p > 0.05) in dry matter yields and soil hydrological properties at the different grass phenological stages. Generally, all the three grasses improved the soil hydrological properties with an increase in grass stubble height. C. ciliaris gave the best soil hydrological properties followed by E. macrostachyus and E. superba, respectively. E. macrostachyus recorded the highest seed viability percentage. C. ciliaris and E. superba were ranked second and third, respectively. C. ciliaris yielded the highest biomass production at the reproductive stage followed by E. superba and E. macrostachyus, respectively. Key words: Cenchrus ciliaris, Enteropogon macrostachyus, Eragrostis superba, rangeland
The challenges of rehabilitating denuded patches of a semi-arid environment in Kenya
Land degradation is a major problem in the semi-arid environments of Sub-Saharan Africa. Fighting land degradation is essential to ensure the sustainable and long-term productivity of the habited semiarid lands. In Kenya, grass reseeding technology has been used to combat land degradation. However, despite the use of locally adapted perennial grass species namely Cenchrus ciliaris (African foxtail grass), Eragrostis superba (Maasai love grass) and Enteropogon macrostachyus (Bush rye) failure still abound. Therefore, more land is still being degraded. The aim of this study was to determine the main factors which contribute to failures in rehabilitating denuded patches in semi-arid lands of Kenya. A questionnaire was administered to capture farmer perceptions on failures on rangeland rehabilitation using grass reseeding technology. Rainfall data was collected during the study period. Moreover, rehabilitation trials using the three grasses were done under natural rainfall. Results from this study show that climatic factors mainly low amounts of rainfall to be the main contributor to rehabilitation failures. 92% of the respondents asserted that reseeding fails because of low rainfall amounts received in the area. The study area received a total of 324 mm of rainfall which was low compared to the average annual mean of 600mm. Reseeded trial plots also failed to establish due to the low amounts of rainfall received. This showed how low rainfall is unreliable for reseeding. Other factors namely destruction by the grazing animals, pests and rodents, flush floods, poor sowing time, poor seed quality, lack of enough seed and weeds also contribute to rehabilitation failures in semi-arid lands of Keny
The Role of Moisture in the Successful Rehabilitation of Denuded Patches of a Semi-Arid Environment in Kenya
This study investigated the role of moisture in the successful rehabilitation of denuded patches in semi-arid lands of Kenya and the primary productivity of three perennial rangelands grasses namely Cenchrus ciliaris (African foxtail), Enteropogon macrostachyus (Bush rye) and Eragrostis superba (Maasai love grass) at three phenological stages (early growth, elongation and reproduction) as pure stands and two-grass mixtures. The grasses were sown on either rainfed (Sites 1 and 2) or simulated rainfall conditions (site 3). Site preparation in all the 3 sites involved mechanical bush clearing, use of fire and creation of micro-catchments using an ox-drawn plough. Soils in site 3 were sandy clay loams and those in sites 1 and 2 were sandy clays. There was total failure in establishment sites 1 and 2 under natural rainfall. Site 3 had good germination and subsequent establishment. These results were attributed to the moisture conditions in the three sites. There was a significant difference (