170 research outputs found

    Red deer synchronise their activity with close neighbours

    Get PDF
    Models of collective animal behaviour frequently make assumptions about the effects of neighbours on the behaviour of focal individuals, but these assumptions are rarely tested. One such set of assumptions is that the switch between active and inactive behaviour seen in herding animals is influenced by the activity of close neighbours, where neighbouring animals show a higher degree of behavioural synchrony than would be expected by chance. We tested this assumption by observing the simultaneous behaviour of paired individuals within a herd of red deer Cervus elaphus. Focal individuals were more synchronised with their two closest neighbours than with the third closest or randomly selected individuals from the herd. Our results suggest that the behaviour of individual deer is influenced by immediate neighbours. Even if we assume that there are no social relationships between individuals, this suggests that the assumptions made in models about the influence of neighbours may be appropriate

    Genome-Wide Identification of Allele-Specific Expression (ASE) in Response to Marek’s Disease Virus Infection Using Next Generation Sequencing.

    Get PDF
    Background Marek’s disease (MD), a T cell lymphoma induced by the highly oncogenic α-herpesvirus Marek’s disease virus (MDV), is the main chronic infectious disease concern threatening the poultry industry. Enhancing genetic resistance to MD in commercial poultry is an attractive method to augment MD vaccines, which is currently the control method of choice. In order to optimally implement this control strategy through marker-assisted selection (MAS) and to gain biological information, it is necessary to identify specific genes that influence MD incidence. Methods A genome-wide screen for allele-specific expression (ASE) in response to MDV infection was conducted. The highly inbred ADOL chicken lines 6 (MD resistant) and 7 (MD susceptible) were inter-mated in reciprocal crosses and half of the progeny challenged with MDV. Splenic RNA pools at a single time after infection for each treatment group point were generated, sequenced using a next generation sequencer, then analyzed for allele-specific expression (ASE). To validate and extend the results, Illumina GoldenGate assays for selected cSNPs were developed and used on all RNA samples from all 6 time points following MDV challenge. Results RNA sequencing resulted in 11-13+ million mappable reads per treatment group, 1.7+ Gb total sequence, and 22,655 high-confidence cSNPs. Analysis of these cSNPs revealed that 5360 cSNPs in 3773 genes exhibited statistically significant allelic imbalance. Of the 1536 GoldenGate assays, 1465 were successfully scored with all but 19 exhibiting evidence for allelic imbalance. Conclusions ASE is an efficient method to identify potentially all or most of the genes influencing this complex trait. The identified cSNPs can be further evaluated in resource populations to determine their allelic direction and size of effect on genetic resistance to MD as well as being directly implemented in genomic selection programs. The described method, although demonstrated in inbred chicken lines, is applicable to all traits in any diploid species, and should prove to be a simple method to identify the majority of genes controlling any complex trait

    Genome-Wide Identification and Quantification of cis- and trans-Regulated Genes Responding to Marek’s Disease Virus Infection via Analysis of Allele-Specific Expression

    Get PDF
    Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by Marek’s disease virus (MDV), a naturally occurring oncogenic alphaherpesvirus. Selecting for increased genetic resistance to MD is a control strategy that can augment vaccinal control measures. To identify high-confidence candidate MD resistance genes, we conducted a genome-wide screen for allele-specific expression (ASE) amongst F1 progeny of two inbred chicken lines that differ substantially in MD resistance. High throughput sequencing was initially used to profile transcriptomes from pools of uninfected and infected individuals at 4 days post-infection to identify any genes showing ASE in response to MDV infection. RNA sequencing identified 22,655 single nucleotide polymorphisms (SNPs) of which 5,360 in 3,773 genes exhibited significant allelic imbalance. Illumina GoldenGate assays were subsequently used to quantify regulatory variation controlled at the gene (cis) and elsewhere in the genome (trans) by examining differences in expression between F1 individuals and artificial F1 RNA pools over six time periods in 1,536 of the most significant SNPs identified by RNA sequencing. Allelic imbalance as a result of cis-regulatory changes was confirmed in 861 of the 1,233 GoldenGate assays successfully examined. Furthermore we have identified seven genes that display trans-regulation only in infected animals and ∼500 SNP that show a complex interaction between cis- and trans-regulatory changes. Our results indicate ASE analyses are a powerful approach to identify regulatory variation responsible for differences in transcript abundance in genes underlying complex traits. And the genes with SNPs exhibiting ASE provide a strong foundation to further investigate the causative polymorphisms and genetic mechanisms for MD resistance. Finally, the methods used here for identifying specific genes and SNPs have practical implications for applying marker-assisted selection to complex traits that are difficult to measure in agricultural species, when expression differences are expected to control a portion of the phenotypic variance

    Establishing a Smartphone Ambulatory ECG Service for Patients Presenting to the Emergency Department with Pre-Syncope and Palpitations

    Get PDF
    Background and Objectives: The Investigation of Palpitations in the ED (IPED) study showed that a smartphone-based event recorder increased the number of patients in whom an electrocardiogram (ECG) was captured during symptoms over five-fold to more than 55% at 90 days compared to standard care and concluded that this safe, non-invasive and easy-to-use device should be considered part of on-going care to all patients presenting acutely with unexplained palpitations or pre-syncope. This study reports the process of establishing a smartphone palpitation and pre-syncope ambulatory care Clinic (SPACC) service. Materials and Methods: A clinical standard operating procedure (SOP) was devised, and funding was secured through a business case for the purchase of 40 AliveCor devices in the first instance. The clinic was launched on 22 July 2019. Results: Between 22 July 2019 and 31 October 2019, 68 patients seen in the emergency departments (EDs) with palpitations or pre-syncope were referred to SPACC. Of those, 30 were male and 38 were female, and the mean age was 45.8 years old (SD 15.1) with a range from 18 years old to 80 years old. A total of 50 (74%) patients underwent full investigation. On the first assessment, seven (10%) patients were deemed to have non-cardiac palpitations and were not fitted with the device. All patients who underwent full investigation achieved symptomatic rhythm correlation most with sinus rhythm, ventricular ectopics, or bigeminy. A symptomatic cardiac dysrhythmia was detected in six (8.8%) patients. Three patients had supraventricular tachycardia (4%), two had atrial fibrillation (3%), and one had atrial flutter (2%). Qualitative feedback from the SPACC team suggested several areas where improvement to the clinic could be made. Conclusion: We believe a smartphone palpitation service based on ambulatory care is simple to implement and is effective at detecting cardiac dysrhythmia in ED palpitation patients

    The acquisitive–conservative axis of leaf trait variation emerges even in homogeneous environments

    Get PDF
    The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation.Methods: We analysed covariation of four leaf functional traits (SLA: specific leaf area, LDMC: leaf dry matter content, Ft: force to tear, and Nm: leaf nitrogen content) in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern.Key Results: We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm , and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not be explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g.all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global).Conclusions: Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.Fil: Gorne, Lucas Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Minden, Vanessa. University of Oldenburg; Alemania. Vrije Universiteit Brussel; BélgicaFil: Onoda, Yusuke. Kyoto University. School of Agriculture; JapónFil: Kramer, Koen. Wageningen University; Países BajosFil: Muir, Christopher. University Of Hawaii; Estados UnidosFil: Michaletz, Sean T. University of British Columbia; CanadáFil: Lavorel, Sandra. Centre National de la Recherche Scientifique; FranciaFil: Sharpe, Joanne. Sharplex Services, Edgecomb; Estados UnidosFil: Jansen, Steven. Universitat Ulm; AlemaniaFil: Slot, Martijn. Smithsonian Tropical Research Institute; PanamáFil: Chacon, Maximiliano Eduardo. Universidad de Costa Rica; Costa RicaFil: Boenisch, Gerhard. Max Planck Institute For Biogeochemistry; Alemani
    corecore