204 research outputs found

    Cold Crystal Reflector Filter Concept

    Full text link
    In this paper the theoretical concept of a cold crystal reflector filter will be presented. The aim of this concept is to balance the shortcoming of the traditional cold polycrystalline reflector filter, which lies in the significant reduction of the neutron flux right above (in energy space) or right below (wavelength space) the first Bragg edge

    The scientific contributions of George Washington Carver

    Get PDF
    2 unnumbered pages, 60 pages"During the twenty-two years from 1921 to January 5, 1943, George Washington Carver achieved both national and inter­national fame. Prominent among the words often used to describe him is the expression ’’great scientist". Biographers and re­porters active in this two-decade period compiled long lists of Carver’s scientific contributions. The purpose of this report is to evaluate these scientific contributions. For this report Dr. Carver’s career is divided into two parts। the first started in 1895, when he went to Tuskegee Institute at the request of Booker T. Washington, and lasted until the death of Booker T. Washington late in 1915. The second division of Carver’s career can itself be considered in two phases: the shorter somewhat obscure part dating from 1916 to about 1921, and the longer portion from 1921 until his death on January 5, 1943. It was during this last portion of his life after he was al­ ready at least fifty-seven years of age that Dr. Carver became famous."--Introduction.Department of Interior. National Park Service

    Impact of crystallite size on the performance of a beryllium reflector

    Full text link
    Beryllium reflectors are used at spallation neutron sources in order to enhance the low-energy flux of neutrons emanating from the surface of a cold and thermal moderator. The design of such a moderator/reflector system is typically carried out using detailed Monte-Carlo simulations, where the beryllium reflector is assumed to behave as a poly-crystalline material. In reality, however, inhomogeneities in the beryllium could lead to discrepancies between the performance of the actual system when compared to the modeled system. The dependence of the total cross section in particular on crystallite size, in the Bragg scattering region, could influence the reflector performance, and if such effect is significant, it should be taken into account in the design of the moderator/reflector system. In this paper, we report on the preliminary results of using cross-section libraries, which include corrections for the crystallite size effect, in spallation source neutronics calculations.Comment: ICANS-XXII

    A hemorrhagic factor in moldy lespedeza hay

    Get PDF
    Digitized 2007 AES.Includes bibliographical references (page 11)

    Storing high moisture crops, including silage in plastic bags

    Get PDF
    Cover title

    A next-generation inverse-geometry spallation-driven ultracold neutron source

    Full text link
    The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-magnitude higher than existing sources, is presented. This UCN-current-optimized source would dramatically improve cutting-edge UCN measurements that are currently statistically limited. A novel "Inverse Geometry" design is used with 40 L of superfluid 4^4He (He-II), which acts as a converter of cold neutrons (CNs) to UCNs, cooled with state-of-the-art sub-cooled cryogenic technology to ∼\sim1.6 K. Our design is optimized for a 100 W maximum heat load constraint on the He-II and its vessel. In our geometry, the spallation target is wrapped symmetrically around the UCN converter to permit raster scanning the proton beam over a relatively large volume of tungsten spallation target to reduce the demand on the cooling requirements, which makes it reasonable to assume that water edge-cooling only is sufficient. Our design is refined in several steps to reach PUCN=2.1×109 /P_{UCN}=2.1\times10^9\,/s under our other restriction of 1 MW maximum available proton beam power. We then study effects of the He-II scattering kernel as well as reductions in PUCNP_{UCN} due to pressurization to reach PUCN=1.8×109 /P_{UCN}=1.8\times10^9\,/s. Finally, we provide a design for the UCN extraction system that takes into account the required He-II heat transport properties and implementation of a He-II containment foil that allows UCN transmission. We estimate a total useful UCN current from our source of Ruse=5×108 /R_{use}=5\times10^8\,/s from a 18 cm diameter guide 5 m from the source. Under a conservative "no return" approximation, this rate can produce an extracted density of >1×104 />1\times10^4\,/cm3^3 in <<1000~L external experimental volumes with a 58^{58}Ni (335 neV) cut-off potential.Comment: Submitted to Journal of Applied Physic
    • …
    corecore