10 research outputs found

    Using Eye Movements to Understand how Security Screeners Search for Threats in X-Ray Baggage.

    Get PDF
    There has been an increasing drive to understand failures in searches for weapons and explosives in X-ray baggage screening. Tracking eye movements during the search has produced new insights into the guidance of attention during the search, and the identification of targets once they are fixated. Here, we review the eye-movement literature that has emerged on this front over the last fifteen years, including a discussion of the problems that real-world searchers face when trying to detect targets that could do serious harm to people and infrastructure

    Correction to: Improved X-ray baggage screening sensitivity with 'targetless' search training.

    Get PDF
    Funder: Defence and Security Accelerator; doi: http://dx.doi.org/10.13039/100012339Abstract: When searching for a known target, mental representations of target features, or templates, guide attention towards matching objects and facilitate recognition. When only distractor features are known, distractor templates allow irrelevant objects to be recognised and attention to be shifted away. This is particularly true in X-ray baggage search, a challenging real-world visual search task with implications for public safety, where targets may be unknown, difficult to predict and concealed by an adversary, but distractors are typically benign and easier to identify. In the present study, we draw on basic principles of distractor suppression and rejection to investigate a counterintuitive ‘targetless’ approach to training baggage search. In a simulated X-ray baggage search task, we observed significant benefits to target detection sensitivity (dâ€Č) for targetless relative to target-based training, but no effects of performance-contingent rewards or the inclusion of superordinate semantic categories during training. The benefits of targetless search training were most apparent for stimuli involving less spatial overlap (occlusion), which likely represents the difficulty and greater individual variation involved in searching more visually complex images. Together, these results demonstrate the effectiveness of a counterintuitive targetless approach to training target detection in X-ray baggage search, based on basic principles of distractor suppression and rejection, with potential for use as a real-world training tool

    Attenuating the 'attentional white bear' effect enhances suppressive attention.

    No full text
    Trying to ignore an object can bias attention towards it - a phenomenon referred to as the 'attentional white bear' (AWB) effect. The mechanisms behind this effect remain unclear. On one hand, the AWB may reflect reactive, 'search and destroy' distractor suppression, which directs attention toward irrelevant objects in order to suppress further attention to them. However, another possibility is that the AWB results from failed proactive distractor suppression - attempting to suppress attention to an irrelevant object from the outset may inadvertently result in an attentional shift towards it. To distinguish these two possibilities, we developed a categorical visual search task that addresses limitations present in prior studies. In five experiments (Ntotal = 96), participants searched displays of naturalistic stimuli cued only with distractor categories (targets were unknown and unpredictable). We observed an AWB and later attenuated it by presenting a pre-search stimulus, likely disrupting guidance from distractor templates in working memory. We conclude that the AWB resulted from a failure of proactive suppression rather than a search and destroy process

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10ÎŒm and 30ÎŒm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12ÎŒm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    The very forward CASTOR calorimeter of the CMS experiment

    No full text
    International audienceThe physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS experiment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of −-6.6 <η<\lt\eta\lt −-5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC

    The very forward CASTOR calorimeter of the CMS experiment

    No full text
    corecore