5 research outputs found

    Electron evaporation of carbon using a high density plasma

    Get PDF
    High-density plasmas are often used either in the preparation of thin films or for the modification of surfaces; nitriding. However, except for collision-driven chemical reactions the electrons present are not used, although electron bombardment heating of the work piece nearly always occurs. Principally it is the ions and neutrals that are utilised for materials processing. By suitable biasing of a conducting source material the electrons can be extracted from a highdensity low-pressure plasma to such an extent that evaporation of this source material can be achieved. Due to the presence of the plasma and the flux of electrons a large proportion of the evaporant is expected to be ionised. We have used this novel arrangement to prepare thin films of carbon using a resonant high-density argon plasma and a water cooled rod of high purity graphite. Multiple substrates were used both outside of, and immersed in, the plasma. We report the characteristics of the plasma (electron temperature and density, the ion energy and flux, and optical emission spectra), the deposition process (the evaporation rate and ion/neutral ratio), and the film properties (IR and UV/Vis absorption spectra, Raman spectra, elemental analysis, hardness and refractive index

    The very forward CASTOR calorimeter of the CMS experiment

    No full text
    International audienceThe physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS experiment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of -6.6 <η<\lt\eta\lt -5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC

    The very forward CASTOR calorimeter of the CMS experiment

    No full text

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    The strategies for and the performance of the CMS silicon tracking system alignment during the 2015–2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios
    corecore