9 research outputs found

    Biopsy Proven Renal Morphology Cognizance into its Four-Year Evolving Pattern; A Pakistani Perspective

    Get PDF
    Objective: To determine the pattern of Biopsy Proven Renal Diseases (BPRD) in a single tertiary care centre in Islamabad, Pakistan. Study Design: Cross-sectional study. Place and Duration of Study: Department of Nephrology, KRL Hospital, Islamabad Pakistan, from Mar 2016 to Nov 2020. Methodology: The archival records of all native renal biopsies performed in adults (>18 years) were retrospectively analyzed.The biopsies were performed according to standard indications and evaluated by light microscopy and immunofluorescence. Results: A total of 134 renal biopsies were studied. Among these, 85(61.1 %) were males, and 49(36.5 %) were females. The mean age was 44.70±14.63 years. Primary glomerulonephritis’s were the predominant group of diseases found in 93(69.4%) cases. Membranous nephropathy (MN) was the most common lesion in 52(38.8%), followed by focal segmental Glomerulosclerosis (FSGS) in 22(16.4%) cases. Chronic tubulointerstitial nephritis (Ch. TIN) 12(9.0%) was the third most common lesion among all biopsies. Other diagnoses included lupus nephritis (LN) 10(7.5%) and IgA nephropathy (IgAN) 9(6.7%). One sample one-sided t-test was used to estimate the minimum proportion of occurrence of different biopsies in our concerned population. The estimated minimum proportion of membranous nephropathy (MN) was 0.31, with a p-value of 0.034. Conclusion: We concluded that primary Glomerulonephritis (PGN) is the most common renal disease, and membranous nephropathy is the most common biopsy-proven Glomerulopathy in our concerned population

    Manipulating the magnetization direction of transverse domain walls in Permalloy/Ir strips using nanosecond current pulses

    No full text
    Using magnetic force microscopy and micromagnetic simulations, we studied the effect of Oersted magnetic fields on the chirality of transverse magnetic domain walls in Fe20_{20}Ni80_{80}/Ir bilayer nanostrips. Applying nanosecond current pulses with a current density of around 2×10122\times10^{12} A/m2^2, the chirality of a transverse domain wall could be switched reversibly and reproducibly. These current densities are similar to the ones used for current-induced domain wall motion, indicating that the Oersted field may stabilize the transverse wall chirality during current pulses and prevent domain wall transformations

    Effets d'asymétrie structurale sur le mouvement induit par courant de parois de domaines magnétiques

    No full text
    The aim of this thesis is to study the effect of the magnetic Oersted field on current-induced domain wall (DW) motion in IrPy bilayer nanostripes. We optimized the epitaxial growth of IrPy films on sapphire (0001) substrates with less structural defects, small surface and interface roughness and small coercive fields. This was expected to reduce the DW pinning and hence increase the DW mobility. Polycrystalline PtPy nanostripes prepared by sputtering were also studied to compare the results with epitaxial samples. A first direct evidence of the effect of the Oersted field on the magnetic configuration of magnetic nanostripes was given by V. Uhlir et al. using time-resolved XMCD-PEEM measurements. They observed a large tilt of the Py and CoFeB magnetization in the direction transverse to the stripes in CoCuPy and CoCuCoFeB trilayer nanostripes. We observed chirality switching of transverse walls induced by the Oersted field due to current pulses using magnetic force microscopy. DW motion was found to be stochastic due to DW pinning, which results in a distribution of velocities. DW motion opposite to the electron flow and DW transformations were also observed due to Joule heating. The large grain size (comparable to the stripe width) in our epitaxial bi-crystalline films with respect to the polycrystalline samples (~10nm) may be a possible source of pinning. Nevertheless, very high maximum DW velocities (up to 700 and 250m/s) for relatively low current densities (1.7 x1012 and 1 x1012 A/m2) were observed in epitaxial and sputtered samples respectively. These velocities are 2 to 5 times higher with similar or even smaller current densities than observed in single layer Py nanostripes, reported in the literature. The Oersted field may be at the origin of the high efficiency of the spin transfer torque in these bilayer stripes. Micromagnetic simulations performed in our group confirm that when a transverse magnetic field is applied in addition to a longitudinal field along the nanostripe for VW motion, the vortex core can be stabilized in the center of nanostripe, suppressing the core expulsion at the nanostripe edge and hence preventing the VW transformation. Similarly, it can stabilize transverse walls, preventing DW transformations. This can result in a shift of the Walker breakdown to higher fields/currents, resulting in an increase in DW velocity. Time-resolved XMCD-PEEM measurements will be performed in the near future to confirm the effect of the Oersted field on the DW motion.L'objectif de cette thèse est d'étudier l'effet du champ magnétique Oersted sur le mouvement induit par courant de parois de domaines magnetiques dans des nanobandes de bicouches IrPy. Nous avons optimisé la croissance épitaxiale des couches minces IrPy avec faible rugosité de surface et d'interface, peu de défauts structurels et un faible champ coercitif. Cela peut réduire le piégeage de parois et donc augmenter sa mobilité. Nanobandes polycristallins PtPy préparées par pulvérisation ont également été étudiées pour comparer les résultats avec des échantillons épitaxiés. Une première preuve directe de l'effet du champ Oersted sur la configuration magnétique de nanobandes magnétiques a été donnée par V. Uhlir et al. utilisant des mesures XMCD-PEEM résolues en temps. Ils ont observé une grande inclinaison transversale de l'aimantation du Py et CoFeB dans les nanobandes en tricouchesCoCuPy et CoCuCoFeB. Nous avons observé le changement de chiralité des parois transverses sous champ Oersted avec des impulsions de courant en utilisant la microscopie à force magnétique. Un mouvement de parois stochastique a été observé en raison du piégeage, ce qui donne lieu à une large distribution de vitesses de paroi de domaine. Déplacement de paroi opposé au flux d'électrons et transformations de paroi ont également été observés en raison de Joule chauffage. Les grains de grande taille (comparable à la largeur de bande) dans nos couches minces épitaxiales bi-cristallins par rapport aux échantillons polycristallins (~10nm) peut être la source possible du fort piégeage. Néanmoins, des vitesses de parois maximales très élevées (jusqu'à 700 et 250m/s) pour des densités de courant relativement faible (1.7x1012 et 1x1012 A/m2) ont été observées dans échantillons épitaxiales et pulvérisées respectivement. Ces vitesses sont 2 à 5 fois plus élevées avec des densités de courant similaires ou plus faible que celles observées dans des nanobandes de Py seul, rapportés dans la littérature. Le champ Oersted est peut-être à l'origine de la plus grande efficacité du couple de transfert de spin dans ces bandes en bicouche. Des simulations micromagnétiques réalisées dans notre groupe confirment qu'un champ magnétique transverse appliqué en plus d'un champ longitudinal pour déplacemer la paroi peut stabiliser le cœur d'une paroi vortex au centre de la nanobande, supprimant ainsi l'expulsion de cœur au bord de la nanobande et donc empêchant la transformation de parois vortex. De même, il peut stabiliser les parois transverses, empêchant des transformations. Cela peut conduire à une décalage du seuil de Walker vers des courants plus élevés, résultant en une augmentation de la vitesse de paroi. Des mesures XMCD-PEEM résolue en temps seront réalisées dans un avenir proche pour confirmer l'effet du champ Oersted sur le mouvement de la paroi

    Effects of structural asymmetry on current-induced domain wall motion.

    No full text
    L'objectif de cette thèse est d'étudier l'effet du champ magnétique Oersted sur le mouvement induit par courant de parois de domaines magnetiques dans des nanobandes de bicouches IrPy. Nous avons optimisé la croissance épitaxiale des couches minces IrPy avec faible rugosité de surface et d'interface, peu de défauts structurels et un faible champ coercitif. Cela peut réduire le piégeage de parois et donc augmenter sa mobilité. Nanobandes polycristallins PtPy préparées par pulvérisation ont également été étudiées pour comparer les résultats avec des échantillons épitaxiés. Une première preuve directe de l'effet du champ Oersted sur la configuration magnétique de nanobandes magnétiques a été donnée par V. Uhlir et al. utilisant des mesures XMCD-PEEM résolues en temps. Ils ont observé une grande inclinaison transversale de l'aimantation du Py et CoFeB dans les nanobandes en tricouchesCoCuPy et CoCuCoFeB. Nous avons observé le changement de chiralité des parois transverses sous champ Oersted avec des impulsions de courant en utilisant la microscopie à force magnétique. Un mouvement de parois stochastique a été observé en raison du piégeage, ce qui donne lieu à une large distribution de vitesses de paroi de domaine. Déplacement de paroi opposé au flux d'électrons et transformations de paroi ont également été observés en raison de Joule chauffage. Les grains de grande taille (comparable à la largeur de bande) dans nos couches minces épitaxiales bi-cristallins par rapport aux échantillons polycristallins (~10nm) peut être la source possible du fort piégeage. Néanmoins, des vitesses de parois maximales très élevées (jusqu'à 700 et 250m/s) pour des densités de courant relativement faible (1.7x1012 et 1x1012 A/m2) ont été observées dans échantillons épitaxiales et pulvérisées respectivement. Ces vitesses sont 2 à 5 fois plus élevées avec des densités de courant similaires ou plus faible que celles observées dans des nanobandes de Py seul, rapportés dans la littérature. Le champ Oersted est peut-être à l'origine de la plus grande efficacité du couple de transfert de spin dans ces bandes en bicouche. Des simulations micromagnétiques réalisées dans notre groupe confirment qu'un champ magnétique transverse appliqué en plus d'un champ longitudinal pour déplacemer la paroi peut stabiliser le cœur d'une paroi vortex au centre de la nanobande, supprimant ainsi l'expulsion de cœur au bord de la nanobande et donc empêchant la transformation de parois vortex. De même, il peut stabiliser les parois transverses, empêchant des transformations. Cela peut conduire à une décalage du seuil de Walker vers des courants plus élevés, résultant en une augmentation de la vitesse de paroi. Des mesures XMCD-PEEM résolue en temps seront réalisées dans un avenir proche pour confirmer l'effet du champ Oersted sur le mouvement de la paroi.The aim of this thesis is to study the effect of the magnetic Oersted field on current-induced domain wall (DW) motion in IrPy bilayer nanostripes. We optimized the epitaxial growth of IrPy films on sapphire (0001) substrates with less structural defects, small surface and interface roughness and small coercive fields. This was expected to reduce the DW pinning and hence increase the DW mobility. Polycrystalline PtPy nanostripes prepared by sputtering were also studied to compare the results with epitaxial samples. A first direct evidence of the effect of the Oersted field on the magnetic configuration of magnetic nanostripes was given by V. Uhlir et al. using time-resolved XMCD-PEEM measurements. They observed a large tilt of the Py and CoFeB magnetization in the direction transverse to the stripes in CoCuPy and CoCuCoFeB trilayer nanostripes. We observed chirality switching of transverse walls induced by the Oersted field due to current pulses using magnetic force microscopy. DW motion was found to be stochastic due to DW pinning, which results in a distribution of velocities. DW motion opposite to the electron flow and DW transformations were also observed due to Joule heating. The large grain size (comparable to the stripe width) in our epitaxial bi-crystalline films with respect to the polycrystalline samples (~10nm) may be a possible source of pinning. Nevertheless, very high maximum DW velocities (up to 700 and 250m/s) for relatively low current densities (1.7 x1012 and 1 x1012 A/m2) were observed in epitaxial and sputtered samples respectively. These velocities are 2 to 5 times higher with similar or even smaller current densities than observed in single layer Py nanostripes, reported in the literature. The Oersted field may be at the origin of the high efficiency of the spin transfer torque in these bilayer stripes. Micromagnetic simulations performed in our group confirm that when a transverse magnetic field is applied in addition to a longitudinal field along the nanostripe for VW motion, the vortex core can be stabilized in the center of nanostripe, suppressing the core expulsion at the nanostripe edge and hence preventing the VW transformation. Similarly, it can stabilize transverse walls, preventing DW transformations. This can result in a shift of the Walker breakdown to higher fields/currents, resulting in an increase in DW velocity. Time-resolved XMCD-PEEM measurements will be performed in the near future to confirm the effect of the Oersted field on the DW motion

    Effets d'asymétrie structurale sur le mouvement induit par courant de parois de domaines magnétiques

    No full text
    L'objectif de cette thèse est d'étudier l'effet du champ magnétique Oersted sur le mouvement induit par courant de parois de domaines magnetiques dans des nanobandes de bicouches IrPy. Nous avons optimisé la croissance épitaxiale des couches minces IrPy avec faible rugosité de surface et d'interface, peu de défauts structurels et un faible champ coercitif. Cela peut réduire le piégeage de parois et donc augmenter sa mobilité. Nanobandes polycristallins PtPy préparées par pulvérisation ont également été étudiées pour comparer les résultats avec des échantillons épitaxiés. Une première preuve directe de l'effet du champ Oersted sur la configuration magnétique de nanobandes magnétiques a été donnée par V. Uhlir et al. utilisant des mesures XMCD-PEEM résolues en temps. Ils ont observé une grande inclinaison transversale de l'aimantation du Py et CoFeB dans les nanobandes en tricouchesCoCuPy et CoCuCoFeB. Nous avons observé le changement de chiralité des parois transverses sous champ Oersted avec des impulsions de courant en utilisant la microscopie à force magnétique. Un mouvement de parois stochastique a été observé en raison du piégeage, ce qui donne lieu à une large distribution de vitesses de paroi de domaine. Déplacement de paroi opposé au flux d'électrons et transformations de paroi ont également été observés en raison de Joule chauffage. Les grains de grande taille (comparable à la largeur de bande) dans nos couches minces épitaxiales bi-cristallins par rapport aux échantillons polycristallins (~10nm) peut être la source possible du fort piégeage. Néanmoins, des vitesses de parois maximales très élevées (jusqu'à 700 et 250m/s) pour des densités de courant relativement faible (1.7x1012 et 1x1012 A/m2) ont été observées dans échantillons épitaxiales et pulvérisées respectivement. Ces vitesses sont 2 à 5 fois plus élevées avec des densités de courant similaires ou plus faible que celles observées dans des nanobandes de Py seul, rapportés dans la littérature. Le champ Oersted est peut-être à l'origine de la plus grande efficacité du couple de transfert de spin dans ces bandes en bicouche. Des simulations micromagnétiques réalisées dans notre groupe confirment qu'un champ magnétique transverse appliqué en plus d'un champ longitudinal pour déplacemer la paroi peut stabiliser le cœur d'une paroi vortex au centre de la nanobande, supprimant ainsi l'expulsion de cœur au bord de la nanobande et donc empêchant la transformation de parois vortex. De même, il peut stabiliser les parois transverses, empêchant des transformations. Cela peut conduire à une décalage du seuil de Walker vers des courants plus élevés, résultant en une augmentation de la vitesse de paroi. Des mesures XMCD-PEEM résolue en temps seront réalisées dans un avenir proche pour confirmer l'effet du champ Oersted sur le mouvement de la paroi.The aim of this thesis is to study the effect of the magnetic Oersted field on current-induced domain wall (DW) motion in IrPy bilayer nanostripes. We optimized the epitaxial growth of IrPy films on sapphire (0001) substrates with less structural defects, small surface and interface roughness and small coercive fields. This was expected to reduce the DW pinning and hence increase the DW mobility. Polycrystalline PtPy nanostripes prepared by sputtering were also studied to compare the results with epitaxial samples. A first direct evidence of the effect of the Oersted field on the magnetic configuration of magnetic nanostripes was given by V. Uhlir et al. using time-resolved XMCD-PEEM measurements. They observed a large tilt of the Py and CoFeB magnetization in the direction transverse to the stripes in CoCuPy and CoCuCoFeB trilayer nanostripes. We observed chirality switching of transverse walls induced by the Oersted field due to current pulses using magnetic force microscopy. DW motion was found to be stochastic due to DW pinning, which results in a distribution of velocities. DW motion opposite to the electron flow and DW transformations were also observed due to Joule heating. The large grain size (comparable to the stripe width) in our epitaxial bi-crystalline films with respect to the polycrystalline samples (~10nm) may be a possible source of pinning. Nevertheless, very high maximum DW velocities (up to 700 and 250m/s) for relatively low current densities (1.7 x1012 and 1 x1012 A/m2) were observed in epitaxial and sputtered samples respectively. These velocities are 2 to 5 times higher with similar or even smaller current densities than observed in single layer Py nanostripes, reported in the literature. The Oersted field may be at the origin of the high efficiency of the spin transfer torque in these bilayer stripes. Micromagnetic simulations performed in our group confirm that when a transverse magnetic field is applied in addition to a longitudinal field along the nanostripe for VW motion, the vortex core can be stabilized in the center of nanostripe, suppressing the core expulsion at the nanostripe edge and hence preventing the VW transformation. Similarly, it can stabilize transverse walls, preventing DW transformations. This can result in a shift of the Walker breakdown to higher fields/currents, resulting in an increase in DW velocity. Time-resolved XMCD-PEEM measurements will be performed in the near future to confirm the effect of the Oersted field on the DW motion.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Determination of ROS Scavenging, Antibacterial and Antifungal Potential of Methanolic Extract of <i>Otostegia limbata</i> (Benth.) Boiss.

    No full text
    Wide spectrum medicinal significance augments plant utilization as the primary source of significant pharmaceutical agents. In vitro investigation of antioxidant and antimicrobial activity highlights the therapeutic potential of Otostegia limbata. Methanol extract of the plant (MEP) shows considerable dose dependent antioxidant ability at six concentrations (7.81 µg/mL to 250 µg/mL) in 2.2-diphenyl-1-picrylhydrazyl (DPPH) assay, phosphomolybdate assay (PMA) and reducing power assay (RPA). The plant capability to scavenge free radicals in the mixture ranged from 37.89% to 63.50% in a concentration-dependent manner. MEP was active against five tested bacterial strains in the agar-well diffusion method. Staphylococcus aureus, gram-positive bacteria was found to be most susceptible followed by S. epidermidis with 18.80 mm and 17.47 mm mean zone of inhibition. The mean inhibition zone against gram-negative strains Klebsiella pneumonia, Pseudomonas spp. and Escherichia coli were 15.07 mm, 14.73 mm, and 12.17 mm. MEP revealed potential against Alternaria spp. and Aspergillus terreus fungal strains evaluated through agar-tube dilution assay. Aspergillus terreus was more sensitive than Alternaria spp. with an average 78.45% and 68.0% inhibition. These findings can serve as a benchmark for forthcoming scrutiny such as bioactive components discovery and drug development

    Determination of ROS Scavenging, Antibacterial and Antifungal Potential of Methanolic Extract of Otostegia limbata (Benth.) Boiss.

    No full text
    Wide spectrum medicinal significance augments plant utilization as the primary source of significant pharmaceutical agents. In vitro investigation of antioxidant and antimicrobial activity highlights the therapeutic potential of Otostegia limbata. Methanol extract of the plant (MEP) shows considerable dose dependent antioxidant ability at six concentrations (7.81 µg/mL to 250 µg/mL) in 2.2-diphenyl-1-picrylhydrazyl (DPPH) assay, phosphomolybdate assay (PMA) and reducing power assay (RPA). The plant capability to scavenge free radicals in the mixture ranged from 37.89% to 63.50% in a concentration-dependent manner. MEP was active against five tested bacterial strains in the agar-well diffusion method. Staphylococcus aureus, gram-positive bacteria was found to be most susceptible followed by S. epidermidis with 18.80 mm and 17.47 mm mean zone of inhibition. The mean inhibition zone against gram-negative strains Klebsiella pneumonia, Pseudomonas spp. and Escherichia coli were 15.07 mm, 14.73 mm, and 12.17 mm. MEP revealed potential against Alternaria spp. and Aspergillus terreus fungal strains evaluated through agar-tube dilution assay. Aspergillus terreus was more sensitive than Alternaria spp. with an average 78.45% and 68.0% inhibition. These findings can serve as a benchmark for forthcoming scrutiny such as bioactive components discovery and drug development

    Emerging One Health Preparedness to Combat National Burden of Diseases in Pakistan: A Comprehensive Insight

    No full text
    In order to integrate and enhance the health of people, animals, and the environment, a multidisciplinary &ldquo;One Health&rdquo; concept has been coined. However, developing countries have frequently lagged in embracing this innovative vision. Pakistan&rsquo;s ecology, human health, and animal health have all been severely jeopardized due to a lack of resources. Human health is significantly impacted by the spread and comeback of zoonotic illnesses, especially for people who live in rural regions and frequently interact with domestic or wild animals. More than 75% of zoonotic diseases were transmitted contiguously from animals to humans or indirectly through interactions among agents or vectors (including both humans and other animals). This review article gives critical insights into the most common zoonotic diseases found in Pakistan in addition to underlining the importance of the &ldquo;One Health&rdquo; philosophy in the management of these illnesses. Interdisciplinary research efforts are required given the current circumstances in order to politicize sustainable solutions for decreasing the disease burden in human and animal populations simultaneously

    Improving the structural and transport properties of cadmium ferrites with the addition of cerium for high frequency applications

    No full text
    Due to their outstanding properties, low cost, and environmental friendliness, mixed transition metal oxides are frequently used in various applications. In this study, Ce³⁺ doped CdFe₂O₄ powder samples were prepared through the co-precipitation process. A peak shift was observed towards a lower 2 angle with the substitution of Ce³⁺ at their lattice site and the lattice constant has a maximum value for the x = 0.06 sample with the crystallite size of 34 nm. Moreover, for x = 0.06 sample, the resistivity was found in the order of 106 Ω cm and the dielectric tangent loss had a smaller value. The electrical and dielectric analysis of the as-prepared x = 0.06 sample indicate that it is the best for high-frequency applications
    corecore