22 research outputs found

    AALLA: Attack-Aware Logical Link Assignment Cost-Minimization Model for Protecting Software-Defined Networks against DDoS Attacks

    Get PDF
    Software-Defined Networking (SDN), which is used in Industrial Internet of Things, uses a controller as its “network brain” located at the control plane. This uniquely distinguishes it from the traditional networking paradigms because it provides a global view of the entire network. In SDN, the controller can become a single point of failure, which may cause the whole network service to be compromised. Also, data packet transmission between controllers and switches could be impaired by natural disasters, causing hardware malfunctioning or Distributed Denial of Service (DDoS) attacks. Thus, SDN controllers are vulnerable to both hardware and software failures. To overcome this single point of failure in SDN, this paper proposes an attack-aware logical link assignment (AALLA) mathematical model with the ultimate aim of restoring the SDN network by using logical link assignment from switches to the cluster (backup) controllers. We formulate the AALLA model in integer linear programming (ILP), which restores the disrupted SDN network availability by assigning the logical links to the cluster (backup) controllers. More precisely, given a set of switches that are managed by the controller(s), this model simultaneously determines the optimal cost for controllers, links, and switches

    Anomaly Detection Using Deep Neural Network for IoT Architecture

    Get PDF
    The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features

    Analysis and Intellectual Structure of the Multi-Factor Authentication in Information Security

    Get PDF
    This study presents the current state of research on multi-factor authentication. Authentication is one of the important traits in the security domain as it ensures that legitimate users have access to the secure resource. Attacks on authentication occur even before digital access is given, but it becomes quite challenging with remote access to secure resources. With increasing threats to single authentication schemes, 2Factor and later multi-factor authentication approaches came into practice. Several studies have been done in the multi-factor authentication discipline, and most of them proposed the best possible approaches, but there are very limited studies in the area that can comprehend all these innovative and effective approaches. Using Web of Science data of the research publications on the topic, the study adopted the bibliometric approach to find the evolution of authentication in the security domain, especially multi-factor authentication. This study finds the impact of the research in the selected domain using bibliometric analysis. This research also identifies the key research trends that most of the researchers are paying attention to. The highest number of publications on multi-factor authentication were published in 2019 while the highest number of citations were received in 2014. United States, India, and China are the leading countries publishing the most on multi-factor authentication

    Design and Analysis of Heterogeneous Software-Defined Networking Controller Placement under DDOS Attack

    No full text
    •Traditional Computer and Telecommunication networks are Complex, Costly, Difficult to manage and reconfigure •Organizations are therefore adopting Software- defined networking (SDN) technology to enhance network agility, expand network infrastructure and reduce operating expenses

    DDoS Attack Monitoring using Smart Controller Placement in Software Defined Networking Architecture

    No full text
    Software defined networking is upcoming agile networking system for computer and telecommunication. The apartness of data plane and control plane are key points of SDN architecture which enables flexibility and programmability of network. But distributed denial of service attack is the main threat for software defined networking architecture as it can send huge traffic directly to the controller. In this paper, we proposed a hypothetical concept of smart controller placement for SDN architecture which can monitor controller’s health status and provide continuous services during the DDoS attack

    Analytical Model for Underwater Wireless Sensor Network Energy Consumption Reduction

    Get PDF
    In an Underwater Wireless Sensor Network (UWSN), extreme energy loss is carried out by the early expiration of sensor nodes and causes a reduction in efficiency in the submerged acoustic sensor system. Systems based on clustering strategies, instead of each node sending information by itself, utilize cluster heads to collect information inside the clusters for forwarding collective information to sink. This can effectively minimize the total energy loss during transmission. The environment of UWSN is 3D architecture-based and follows a complex hierarchical clustering strategy involving its most effecting unique parameters such as propagation delay and limited transmission bandwidth. Round base clustering strategy works in rounds, where each round comprises three fundamental stages: cluster head selection, grouping or node association, and data aggregation followed by forwarding data to the sink. In UWSN, the energy consumed during the formation of clusters has been considered casually or completely evaded in the previous works. In this paper, the cluster head setup period has been considered the main contributor to extra energy utilizer. A numerical channel model is proposed to compute extra energy. It is performed by using a UWSN broad model. The results have shown that extra maximum energy consumption is approximately 12.9 percent of the system total energy consumed in information transmissions

    IoT Technology Enabled Heuristic Model with Morlet wavelet neural network for numerical treatment of Heterogeneous Mosquito Release Ecosystem

    Get PDF
    The utmost advancements of artificial neural networks (ANNs), software-defined networks (SDNs) and internet of things (IoT) technologies find beneficial in different applications of the smart healthcare sector. Aiming at modern technology's use in the future development of healthcare, this paper presents an advanced heuristic based on Morlet wavelet neural network for solving the mosquito release ecosystem in a heterogeneous atmosphere. The mosquito release ecosystem is dependent of six classes, eggs density, larvae density, pupae density, mosquitoes searching for hosts density, resting mosquito’s density and mosquitoes searching for ovipositional site density. An artificial neural network with the layer structure of Morlet wavelet (MWNN) kernel is presented using the global and local search optimization schemes of genetic algorithm (GA) and active-set algorithm (ASA), i.e., MWNN-GA-ASA. The accurateness, reliability and constancy of the proposed MWNN-GA-ASA is established through comparative examinations with Adams method based numerical results to solve the proposed nonlinear system with matching of order 10-06 to 10-09. The accuracy and convergence of the proposed MWNN-GA-ASA is certified using the statistical operators based on root mean square error (RMSE), Theil's inequality coefficient (T.I.C) and mean absolute deviation (MAD) operators

    An Android-based Portable Smart Cane for Visually Impaired People

    No full text
    In today’s encouraging world of technology, mobile applications are a speedily increasing segment of the worldwide mobile market. An android operating system is the highest accepted and extremely developing open platform for mobile application development. Due to the rise of the impaired people population and there are limited technological-based facilities, we want to leverage technology to develop an Information & Communication Technologies (ICT) based smart portable cane for visually impaired people using android application. We have created an information-based probabilistic relative model amongst the key indicators and sequenced their data gathering priority and precedence. The device is developed and tested with blind people that gives better results for reliability, user friendly, portability, less weight, and economical so that everyone can easily purchase, mount, and conFigure to walk more confidently and perform a necessary operation such as obstacle detection in the range of 5 feet with varying buzzer frequency after every 12 inches to give batter understanding of distance to obstacle also the facility to operate mobile from the mounted device such as sending a message to caretakers, dialing a call, help message, SMS read and open Google maps to navigate by a single click on the mounted buttons on a white cane that wirelessly communicates through Bluetooth transceiver

    Design of Morlet Wavelet Neural Network for Solving a Class of Singular Pantograph Nonlinear Differential Models

    Get PDF
    The aim of this study is to design a layer structure of feed-forward artificial neural networks using the Morlet wavelet activation function for solving a class of pantograph differential Lane-Emden models. The Lane-Emden pantograph differential equation is one of the important kind of singular functional differential model. The numerical solutions of the singular pantograph differential model are presented by the approximation capability of the Morlet wavelet neural networks (MWNNs) accomplished with the strength of global and local search terminologies of genetic algorithm (GA) and interior-point algorithm (IPA), i.e., MWNN-GAIPA. Three different problems of the singular pantograph differential models have been numerically solved by using the optimization procedures of MWNN-GAIPA. The correctness of the designed MWNN-GAIPA is observed by comparing the obtained results with the exact solutions. The analysis for 3, 6 and 60 neurons are also presented to check the stability and performance of the designed scheme. Moreover, different statistical analysis using forty number of trials is presented to check the convergence and accuracy of the proposed MWNN-GAIPA scheme
    corecore