6 research outputs found

    A community scale hybrid renewable energy system for sustainable power supply during load shedding

    Get PDF
    Load shedding is an operating condition in which the electrical grid is temporarily disconnected from the load. The objective is to minimize the gap between available generation capacity and load demand while maintaining an equitable supply for all consumers. Load shedding is a prominent problem for many developing countries. To address this issue, this paper explores the potential of a hybrid energy system (HES) to provide uninterrupted power supply at the distribution feeder despite load shedding from electrical grid. The proposed HES in this work combines photovoltaic (PV) array, battery storage system (BSS) and diesel generator (DG). The HES is equipped with energy management scheme (EMS) that ensures continuous power supply, improves energy efficiency, and minimizes the electricity cost. To accomplish these tasks, the EMS operates the system in one of three modes: grid mode, renewable energy source mode and the diesel generator mode. Besides, the proposed methodology allows injecting surplus PV energy into the grid, thus maximizing PV utilization and improving power system’s reliability. The results of this study will assist policymakers to determine the prospect of renewable based hybrid system to supply sustainable power and eliminate the energy problems in the power deficit countries

    Collaboration among teachers in inclusive special education program classrooms

    Get PDF
    Collaboration between teachers and special education teachers is a vital factor in ensuring the success of the implementation of the Inclusive Education Programs especially in the teaching and learning aspects. Until 2016, there is no detailed document or information regarding how the collaboration is conducted or implemented in the inclusive classrooms. Therefore, this study is aimed to explore how collaboration is conducted and implemented in the Inclusive Special Education Program classrooms, particularly identifying the stage of collaboration the school are at and approach used in the inclusive classrooms. To achieve this, a survey questionnaire was used as an instrument for this study and it is conducted on 53 schools and 441 participants including headmasters, senior assistant principals for special education teachers, subject teachers and special education teacher. Results showed that most of the participants are at the “Starting a partnership” stage (mean score = 4.165, SD = 0.797). The type of collaboration approach that are usually being used is the “collaboration-consultation” approach (mean score = 4.10, SD = 0.721). This suggests that more action is needed to ensure the successful implementation of an inclusive program. This is because without done the recommended steps of collaboration, the inclusive may not carried out effectively. A successful inclusive classroom also can be achieved through multiple approaches of collaboration are implemented. Therefore, knowledge about steps and approaches of collaboration should be knowledgeable to general, special education teacher and also school administrators

    Oil palm and machine learning: reviewing one decade of ideas, innovations, applications, and gaps

    Get PDF
    Machine learning (ML) offers new technologies in the precision agriculture domain with its intelligent algorithms and strong computation. Oil palm is one of the rich crops that is also emerging with modern technologies to meet global sustainability standards. This article presents a comprehensive review of research dedicated to the application of ML in the oil palm agricultural industry over the last decade (2011–2020). A systematic review was structured to answer seven predefined research questions by analysing 61 papers after applying exclusion criteria. The works analysed were categorized into two main groups: (1) regression analysis used to predict fruit yield, harvest time, oil yield, and seasonal impacts and (2) classification techniques to classify trees, fruit, disease levels, canopy, and land. Based on defined research questions, investigation of the reviewed literature included yearly distribution and geographical distribution of articles, highly adopted algorithms, input data, used features, and model performance evaluation criteria. Detailed quantitative– qualitative investigations have revealed that ML is still underutilised for predictive analysis of oil palm. However, smart systems integrated with machine vision and artificial intelligence are evolving to reform oil palm agri-business. This article offers an opportunity to understand the significance of ML in the oil palm agricultural industry and provides a roadmap for future research in this domain

    Optimal Design and Performance Analysis of Hybrid Renewable Energy System for Ensuring Uninterrupted Power Supply During Load Shedding

    No full text
    Given the significant impact of the UN 2015 agenda on sustainable development, the search for eco-friendly and efficient energy solutions has intensified. The renewable based hybrid systems have emerged as feasible solution in this context. This paper explores the potential of utilizing a hybrid energy system (HES) from a distinctive perspective — addressing the challenges of load shedding at the distribution level. The HES configuration in this investigation includes photovoltaic (PV) array, wind turbines (WT), battery storage unit (BSU) and diesel generator system. The research involves simulations, optimization, and sensitivity analysis for a residential community in the southwestern part of Pakistan, which frequently experiences load shedding. Grasshopper optimization algorithm (GOA) is applied to simultaneously minimize the levelized electricity cost (LEC), payback period (PBP), and loss of power supply probability (LPSP). Simulations compare different HES configurations based on the estimation of local renewable energy potential and the load shedding schedule of the utility company. The optimal solution, with NPV=110N_{PV}=110 , NWT=2N_{WT}=2 , and NBSU=16N_{BSU}=16 , was selected, resulting in a minimum LEC of 6.64 cents/kWh and a PBP of 7.4 years. These results are validated using the particle swarm optimization algorithm (PSO). The performance of HES is benchmarked against conventional solutions, such as standalone diesel generators, battery-based uninterruptible power supplies (UPS), and combinations of generators and UPS. The findings demonstrate the significant superiority of HES over conventional solutions in terms of reduced LEC, shorter PBP and reduced carbon emissions. Finally, the sensitivity analysis examines the impact of varying component prices, feed-in tariff rates, meteorological conditions, and load demand variations on the LEC and PBP of the HES

    The Potential Role of Hybrid Renewable Energy System for Grid Intermittency Problem: A Techno-Economic Optimisation and Comparative Analysis

    No full text
    The renewed interest for power generation using renewables due to global trends provides an opportunity to rethink the approach to address the old yet existing load shedding problem. In the literature, limited studies are available that address the load shedding problem using a hybrid renewable energy system. This paper aims to fill this gap by proposing a techno-economic optimisation of a hybrid renewable energy system to mitigate the effect of load shedding at the distribution level. The proposed system in this work is configured using a photovoltaic array, wind turbines, an energy storage unit (of batteries), and a diesel generator system. The proposed system is equipped with a rule-based energy management scheme to ensure efficient utilisation and scheduling of the sources. The sizes of the photovoltaic array, wind turbine unit, and the batteries are optimised via the grasshopper optimisation algorithm based on the multi-criterion decision that includes loss of power supply probability, levelised cost of electricity, and payback period. The results for the actual case study in Quetta, Pakistan, show that the optimum sizes of the photovoltaic array, wind turbines, and the batteries are 35.75 kW, 10 kW, and 28.8 kWh, respectively. The sizes are based on the minimum values of levelised cost of electricity (6.64 cents/kWh), loss of power supply probability (0.0092), and payback period (7.4 years). These results are compared with conventional methods (generators, uninterruptible power supply, and a combined system of generator and uninterruptible power supply system) commonly used to deal with the load shedding problem. The results show that the renewable based hybrid system is a reliable and cost-effective option to address grid intermittency problem

    The Potential Role of Hybrid Renewable Energy System for Grid Intermittency Problem: A Techno-Economic Optimisation and Comparative Analysis

    No full text
    The renewed interest for power generation using renewables due to global trends provides an opportunity to rethink the approach to address the old yet existing load shedding problem. In the literature, limited studies are available that address the load shedding problem using a hybrid renewable energy system. This paper aims to fill this gap by proposing a techno-economic optimisation of a hybrid renewable energy system to mitigate the effect of load shedding at the distribution level. The proposed system in this work is configured using a photovoltaic array, wind turbines, an energy storage unit (of batteries), and a diesel generator system. The proposed system is equipped with a rule-based energy management scheme to ensure efficient utilisation and scheduling of the sources. The sizes of the photovoltaic array, wind turbine unit, and the batteries are optimised via the grasshopper optimisation algorithm based on the multi-criterion decision that includes loss of power supply probability, levelised cost of electricity, and payback period. The results for the actual case study in Quetta, Pakistan, show that the optimum sizes of the photovoltaic array, wind turbines, and the batteries are 35.75 kW, 10 kW, and 28.8 kWh, respectively. The sizes are based on the minimum values of levelised cost of electricity (6.64 cents/kWh), loss of power supply probability (0.0092), and payback period (7.4 years). These results are compared with conventional methods (generators, uninterruptible power supply, and a combined system of generator and uninterruptible power supply system) commonly used to deal with the load shedding problem. The results show that the renewable based hybrid system is a reliable and cost-effective option to address grid intermittency problem
    corecore