47 research outputs found

    ANALYSIS OF PRODUCTION SYSTEM OF PHARMACEUTICAL COMPANY BY USING LEAN TECHNIQUE OF OVERALL EQUIPMENT EFFECTIVENESS (OEE)

    Get PDF
    The pharmaceutical companies generally lack maintenance equipment at working condition. However, increasing the availability of the maintenance system impacts the productivity and quality which ultimately satisfy the customers. Consequently, in order to overcome the challenges during the production system, it is necessary to implement the total quality management tool such as; total productive maintenance to enhance the productivity, quality and performance of the equipment which eventually increase the profitability of the company. So, data was collected from one of the reputed pharmaceutical company of Pakistan to evaluate the factors affecting the overall equipment effectiveness. Different analysis was carried out like fish bone diagram to find out the potential cause and Pareto chart was used to priorities the problem and also the descriptive analysis was conducted in which mean of availability, performance and quality were obtained 82.8% ,81.6% and 88.7% respectively. Total average OEE was 60%. After implementing of TPM and minimizing the six big losses. In order to minimize of losses like equipment failure, idling and minor stoppage and process defect. Our OEE was increased from 60% to 71%

    Impact of methylene blue on enhancing the hydrocarbon potential of early cambrian Khewra sandstone formation from the Potwar Basin, Pakistan

    Get PDF
    Significant amounts of hydrocarbon resources are left behind after primary and secondary recovery processes, necessitating the application of enhanced oil recovery (EOR) techniques for improving the recovery of trapped oil from subsurface formations. In this respect, the wettability of the rock is crucial in assessing the recovery and sweep efficiency of trapped oil. The subsurface reservoirs are inherently contaminated with organic acids, which renders them hydrophobic. Recent research has revealed the significant impacts of nanofluids, surfactants, and methyl orange on altering the wettability of organic-acid-contaminated subsurface formations into the water-wet state. This suggests that the toxic dye methylene blue (MB), which is presently disposed of in huge quantities and contaminates subsurface waters, could be used in EOR. However, the mechanisms behind hydrocarbon recovery using MB solution for attaining hydrophilic conditions are not fully understood. Therefore, the present work examines the impacts of MB on the wettability reversal of organic-acid-contaminated Khewra sandstone samples (obtained from the outcrop in the Potwar Basin, Pakistan) under the downhole temperature and pressure conditions. The sandstone samples are prepared by aging with 10-2 mol/L stearic acid and subsequently treated with various amounts of aqueous MB (10-100 mg/L) for 1 week. Contact angle measurements are then conducted under various physio-thermal conditions (0.1-20 MPa, 25-50 °C, and salinities of 0.1-0.3 M). The results indicate that the Khewra sandstone samples become hydrophobic in the presence of organic acid and under increased pressure, temperature, and salinity. However, the wettability changes from oil-wet to preferentially water-wet in the presence of various MB solutions, thus highlighting the favorable effects of MB on EOR from the Khewra sandstone formation. Moreover, the most significant change in wettability is observed for the Khewra sandstone sample that was aged using 100 mg/L MB. These results suggest that injecting MB into deep underground Khewra sandstone reservoirs may produce more residual hydrocarbons

    One-pot synthesis of crystalline structure: Nickel-iron phosphide and selenide for hydrogen production in alkaline water splitting

    Get PDF
    Electrocatalytically active nanocomposites play a vital role in energy generation, conversion, and storage technologies. Transition metal-based catalysts such as nickel and iron and their pnictide (phosphide), and chalcogenide (selenide) compounds exhibit good activity for hydrogen evolution reaction (HER) in the alkaline environment. In this study, transition metals-based catalysts (Ni-P-Se, Fe-P-Se, and Ni-Fe-P-Se) solutions were prepared using a simple one-pot method. Prepared solutions were deposited on Ni foam, and different characterization techniques were used to determine the composition, structure, and morphology of as-prepared catalysts. Furthermore, it was found that Ni-Fe-P-Se as a cathode material showed better HER performance compared to other investigated materials with the overpotential value of 316 mV at 10 mA cm-2 current density and 89 mV dec-1 Tafel slope value. The stability tests of the as-prepared catalyst confirmed that the synergistic effect between various elements enhances the electrocatalytic performance for up to 24 hours, providing a fair, stable nature of Ni-Fe-P-Se based sample

    Experimental evaluation of liquid nitrogen fracturing on the development of tight gas carbonate rocks in the Lower Indus Basin, Pakistan

    Get PDF
    Tight gas carbonate formations have enormous potential to meet the supply and demand of the ever-growing population. However, it is impossible to produce from these formations due to the reduced permeability and lower marginal porosity. Several methods have been used to extract unconventional tight gas from these reservoirs, including hydraulic fracturing and acidizing. However, field studies have demonstrated that these methods have environmental flaws and technical problems. Liquid nitrogen (LN2) fracturing is an effective stimulation technique that provides sudden thermal stress in the rock matrix, creating vivid fractures and improving the petro-physical potential. In this study, we acquired tight gas carbonate samples and thin sections of rock from the Laki limestone formation in the Lower Indus Basin, Pakistan, to experimentally quantify the effects of LN2 fracturing. Initially, these samples were characterized based on mineralogical (X-ray diffraction), petrography, and petro-physical (permeability and porosity) properties. Additionally, LK-18-06 Laki limestone rock samples were exposed to LN2 for different time intervals (30, 60, and 90 mins), and various techniques were applied to comprehend the effects of the LN2 before and after treatment, such as atomic force microscopy, scanning electron microscopy, energy-dispersive spectroscopy, nano-indentation, and petro-physical characterization. Our results reveal that the LN2 treatment was very effective and induced vivid fractures of up to 38 µm. The surface roughness increased from 275 to 946 nm, and indentation moduli significantly decreased due to the decreased compressibility of the rock matrix. Petro-physical measurements revealed that the porosity increased by 47% and that the permeability increased by 67% at an optimum LN2 treatment interval of 90 mins. This data can aid in an accurate assessment of LN2 fracturing for the better development of unconventional tight gas reservoirs

    Phase Pure Synthesis and Morphology Dependent Magnetization in Mn Doped ZnO Nanostructures

    Get PDF
    Zn 0.95 Mn 0.05 O nanostructures were synthesized using sol gel derived autocombustion technique. As-burnt samples were thermally annealed at different temperatures (400, 600, and 800 ∘ C) for 8 hours to investigate their effect on structural morphology and magnetic behavior. X-ray diffraction and scanning electron microscopic studies demonstrated the improvement in crystallinity of phase pure wurtzite structure of Mn doped ZnO with variation of annealing temperature. Energy dispersive X-ray elemental compositional analysis confirmed the exact nominal compositions of the reactants. Electrical resistivity measurements were performed with variation in temperature, which depicted the semiconducting nature similar to parent ZnO after 5 at% Mn doping. Magnetic measurements by superconducting quantum interference device detected an enhanced trend of ferromagnetic interactions in thermally annealed compositions attributed to the improved structural morphology and crystalline refinement process

    Multi-Shaded Edible Films Based on Gelatin and Starch for the Packaging Applications

    No full text
    Starch and gelatin are natural biopolymers that offer a variety of benefits and are available at relatively low costs. In addition to this, they are an appealing substitute for synthetic polymers for the manufacturing of packaging films. Such packaging films are not only biodegradable but are also edible. Moreover, they are environmentally friendly and remain extremely cost-effective. In lieu of this, films made from fish gelatin and cornstarch have been the subject of several experiments. The pristine gelatin films have poor performance against water diffusion but exhibit excellent flexibility. The goal of this study was to assess the performance of pristine gelatin films along with the addition of food plasticizers. For this purpose, solutions of gelatin/cornstarch were prepared and specified quantities of food colors/plasticizers were added to develop different shades. The films were produced by using a blade coating method and were characterized by means of their shaded colors, water vapor transmission rate (WVTR), compositional changes via Fourier transform infrared spectroscopy (FTIR), hardness, bendability, transparency, wettability, surface roughness, and thermal stability. It was observed that the addition of several food colors enhanced the moisture blocking effect, as a 10% reduction in WVTR was observed in the shaded films as compared to pristine films. The yellow-shaded films exhibited the lowest WVTR, i.e., around 73 g/m2·day when tested at 23 °C/65%RH. It was also observed that the films’ WVTR, moisture content, and thickness were altered when different colors were added into them, although the chemical structure remained unchanged. The mechanical properties of the shaded films were improved by a factor of two after the addition of colored plasticizers. Optical examination and AFM demonstrated that the generated films had no fractures and were homogeneous, clear, and shiny. Finally, a biscuit was packaged in the developed films and was monitored via shore hardness. It was observed that the edible packed sample’s hardness remained constant even after 5 days. This clearly suggested that the developed films have the potential to be used for packaging in various industries

    Exact and solitary wave structure of the tumor cell proliferation with LQ model of three dimensional PDE by newly extended direct algebraic method

    No full text
    An essential stage in the spread of cancer is the entry of malignant cells into the bloodstream. The fundamental mechanism of cancer cell intravasation is still completely unclear, despite substantial advancements in observing tumor cell mobility in vivo. By creating therapeutic methods in conjunction with control engineering or by using the models for simulations and treatment process evaluation, tumor growth models have established themselves as a crucial instrument for producing an engineering backdrop for cancer therapy. Because tumor growth is a highly complex process, mathematical modeling has been essential for describing it because a carefully crafted tumor growth model constantly describes the measurements and the physiological processes of the tumors. This article discusses the exact and solitary wave behavior of a tumor cell with a three-dimensional linear-quadratic model. Exact solutions have been discussed in detail using the newly extended direct algebraic method, which presents a variety of answers to this issue based on the conditions applied. This article also illustrates its graphical behavior with surface and contour plots of several solitons

    Risk assessment of arsenic in ground water of Larkana city

    No full text
    Water is an essential component for the survival of humans and animals. Due to industrialization, water is being contaminated with varying polluting agents, arsenic (As) contamination is one of them. An exclusive study was carried out for the determination of As in groundwater of Larkana city using microwave-assisted digestion followed by atomic absorption spectrometry (AAS). For that purpose, a total of 110 groundwater samples were collected from 10 union councils (UCs) of the city based on global position system (GPS) method. Results revealed that maximum concentration of As was found 17.0 μg/L in UC-6, while in UC-1, UC-2 and UC-10 the concentration of As was found within the permissible limits of WHO. The minimum and maximum mean concentration of As was found 3.59 μg/L and 6.78 μg/L, respectively. Out of 110 ground water samples of Larkana city, 13 samples were found above the permissible limits (~12% of total samples). Hence, water can be used for drinking purpose with caution

    Co-Digestion of Petroleum Sludge and Buffalo Dung by Batch Anaerobic Digestion System

    No full text
    Globally, the petroleum industry plays a very significant role in producing oil to fill full the demand of the overgrowing population. The improper management of abandoned quantity of petroleum sludge that is one of the byproducts of petroleum industry has posed many environmental as well as socio-economic issues in most of the developing countries. The petroleum sludge contains various toxic substances like minerals, oil, and other chemicals which are very harmful for biotic as well as abiotic environment. Meanwhile, a huge quantity of livestock manure, especially buffalo dung, is produced in villages and burned as fuel after drying in open atmosphere for domestic application without any treatment which generates indoor air pollution. This study was formulated to analysis the biochemical methane potential of buffalo dung with petroleum sludge at different mixing ratios (i.e., 1:1, 1.5:0.5 and 0.5:1.5) through batch digestion system. The substrates were prepared and characterized before and after batch digestion by using standard methodology. The maximum methane was obtained as 268Nml/gVS, followed by 326Nml/gVS and 191Nml/gVS at mixing ratio of 1:1, 1.5:0.5 and 0.5:1.5 respectively. The results and finding of study lead to recommend that the codigestion of buffalo dung with petroleum sludge at mixing ratio of 1.5:0.5 through continuous batch digestion would be best option to enhance methane production
    corecore