8 research outputs found

    Crop suitability mapping for underutilized crops in South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.Several neglected and underutilised species (NUS) provide solutions to climate change and create a Zero Hunger world, the Sustainable Development Goal 2. However, limited information describing their agronomy, water use, and evaluation of potential growing zones to improve sustainable production has previously been cited as the bottlenecks to their promotion in South Africa's (SA) marginal areas. Therefore, the thesis outlines a series of assessments aimed at fitting NUS in the dryland farming systems of SA. The study successfully mapped current and possible future suitable zones for NUS in South Africa. Initially, the study conducted a scoping review of land suitability methods. After that, South African bioclimatic zones with high rainfall variability and water scarcity were mapped. Using the analytic hierarchy process (AHP), the suitability for selected NUS sorghum (Sorghum bicolor), cowpea (Vigna unguiculata), amaranth and taro (Colocasia esculenta) was mapped. The future growing zones were used using the MaxEnt model. This was only done for KwaZulu Natal. Lastly, the study assessed management strategies such as optimum planting date, plant density, row spacing, and fertiliser inputs for sorghum. The review classified LSA methods reported in articles as traditional (26.6%) and modern (63.4%). Modern approaches, including multicriteria decision-making (MCDM) methods such as AHP (14.9%) and fuzzy methods (12.9%), crop simulation models (9.9%) and machine-learning-related methods (25.7%), are gaining popularity over traditional methods. The review provided the basis and justification for land suitability analysis (LSA) methods to map potential growing zones of NUS. The review concluded that there is no consensus on the most robust method for assessing NUS's current and future suitability. South Africa is a water-scarce country, and rainfall is undoubtedly the dominating factor determining crop production, especially in marginal areas where irrigation facilities are limited for smallholder farmers. Based on these challenges, there is a need to characterise bioclimatic zones in SA that can be qualified under water stress and with high rainfall variation. Mapping high-risk agricultural drought areas were achieved by using the Vegetation Drought Response Index (VegDRI), a hybrid drought index that integrates the Standardized Precipitation Index (SPI), Temperature Condition Index (TCI), and the Vegetation Condition Index (VCI). In NUS production, land use and land classification address questions such as “where”, “why”, and “when” a particular crop is grown within particular agroecology. The study mapped the current and future suitable zones for NUS. The current land suitability assessment was done using Analytic Hierarchy Process (AHP) using multidisciplinary factors, and the future was done through a machine learning model Maxent. The maps developed can contribute to evidence-based and site-specific recommendations for NUS and their mainstreaming. Several NUS are hypothesised to be suitable in dry regions, but the future suitability remains unknown. The future distribution of NUS was modelled based on three representative concentration pathways (RCPs 2.6, 4.5 and 8.5) for the years between 2030 and 2070 using the maximum entropy (MaxEnt) model. The analysis showed a 4.2-25% increase under S1-S3 for sorghum, cowpea, and amaranth growing areas from 2030 to 2070. Across all RCPs, taro is predicted to decrease by 0.3-18 % under S3 from 2050 to 2070 for all three RCPs. Finally, the crop model was used to integrate genotype, environment and management to develop one of the NUS-sorghum production guidelines in KwaZulu-Natal, South Africa. Best sorghum management practices were identified using the Sensitivity Analysis and generalised likelihood uncertainty estimation (GLUE) tools in DSSAT. The best sorghum management is identified by an optimisation procedure that selects the optimum sowing time and planting density-targeting 51,100, 68,200, 102,500, 205,000 and 300 000 plants ha-1 and fertiliser application rate (75 and 100 kg ha-1) with maximum long-term mean yield. The NUS are suitable for drought-prone areas, making them ideal for marginalised farming systems to enhance food and nutrition security

    Mapping the spatial distribution of underutilised crop species under climate change using the MaxEnt model: A case of KwaZulu-Natal, South Africa

    Get PDF
    Knowing the spatial and temporal suitability of neglected and underutilised crop species (NUS) is important for fitting them into marginal production areas and cropping systems under climate change. The current study used climate change scenarios to map the future distribution of selected NUS, namely, sorghum (Sorghum bicolor), cowpea (Vigna unguiculata), amaranth (Amaranthus) and taro (Colocasia esculenta) in the KwaZulu-Natal (KZN) province, South Africa. The future distribution of NUS was simulated using a maximum entropy (MaxEnt) model using regional circulation models (RCMs) from the CORDEX archive, each driven by a different global circulation model (GCM), for the years 2030 to 2070. The study showed an increase of 0.1–11.8% under highly suitable (S1), moderately suitable (S2), and marginally suitable (S3) for sorghum, cowpea, and amaranth growing areas from 2030 to 2070 across all RCPs. In contrast, the total highly suitable area for taro production is projected to decrease by 0.3–9.78% across all RCPs. The jack-knife tests of the MaxEnt model performed efficiently, with areas under the curve being more significant than 0.8. The study identified annual precipitation, length of the growing period, and minimum and maximum temperature as variables contributing significantly to model predictions

    Investigation of the optimum planting dates for maize varieties using a hybrid approach: A case of Hwedza, Zimbabwe.

    Get PDF
    Water scarcity and unreliable weather conditions frequently cause smallholder farmers in Zimbabwe to plant maize (Zea mays L.) varieties outside the optimum planting timeframe. This challenge exacts the necessity to develop sowing management options for decision support. The study's objective was to use a hybrid approach to determine the best planting windows and maize varieties. The combination will guide farmers on planting dates, dry spell probability during critical stages of the crop growth cycle and rainfall cessation. To capture farmer's perception on agroclimatic information, a systematic random sampling of 438 smallholders was carried out. An analysis of climatic data during 1949-2012 was conducted using INSTAT to identify the best planting criterion. The best combination of planting criterion and maize varieties analysis was then achieved by optimizing planting dates and maize varieties in the DSSAT environment. It was found that 56.2% of farmers grew short-season varieties, 40.2% medium-season varieties and 3.6% long-season varieties. It was also established that the number of rain days and maize yield had a strong positive relationship (p = 0.0049). No significant association was found amongst maize yield (p > 0.05), and planting date criteria, Depth (40mm in 4 days), the AREX criterion- Agricultural Research Extension (25 mm rainfall in 7 days) and the MET Criterion-Department of Meteorological Services (40 mm in 15 days). Highest yields were simulated under the combination of medium-season maize variety and the AREX and MET criteria. The range of simulated yields from 0.0 t/ha to 2.8 t/ha formed the basis for the development of an operational decision support tool (cropping calendar) with (RMSE) (0.20). The methodology can be used to select the best suitable maize varieties and a range of planting time

    El Niño’s Effects on Southern African Agriculture in 2023/24 and Anticipatory Action Strategies to Reduce the Impacts in Zimbabwe

    Get PDF
    The frequency of El Niño occurrences in southern Africa surpasses the norm, resulting in erratic weather patterns that significantly impact food security, particularly in Zimbabwe. The effects of these weather patterns posit that El Niño occurrences have contributed to the diminished maize yields. The objective is to give guidelines to policymakers, researchers, and agricultural stakeholders for taking proactive actions to address the immediate and lasting impacts of El Niño and enhance the resilience of the agricultural industry. This brief paper provides prospective strategies for farmers to anticipate and counteract the El Niño-influenced dry season projected for 2023/24 and beyond. The coefficient of determination R2 between yield and ENSO was low; 11 of the 13 El Niño seasons had a negative detrended yield anomaly, indicating the strong association between El Nino’s effects and the reduced maize yields in Zimbabwe. The R2 between the Oceanic Nino Index (ONI) and rainfall (43%) and between rainfall and yield (39%) indirectly affects the association between ONI and yield. To safeguard farmers’ livelihoods and improve their preparedness for droughts in future agricultural seasons, this paper proposes a set of strategic, tactical, and operational decision-making guidelines that the agriculture industry should follow. The importance of equipping farmers with weather and climate information and guidance on drought and heat stress was underscored, encompassing strategies such as planting resilient crop varieties, choosing resilient livestock, and implementing adequate fire safety measures

    Evaluation of Land Suitability Methods with Reference to Neglected and Underutilised Crop Species: A Scoping Review

    Get PDF
    In agriculture, land use and land classification address questions such as “where”, “why” and “when” a particular crop is grown within a particular agroecology. To date, there are several land suitability analysis (LSA) methods, but there is no consensus on the best method for crop suitability analysis. We conducted a scoping review to evaluate methodological strategies for LSA. Secondary to this, we assessed which of these would be suitable for neglected and underutilised crop species (NUS). The review classified LSA methods reported in articles as traditional (26.6%) and modern (63.4%). Modern approaches, including multi-criteria decision-making (MCDM) methods such as analytical hierarchy process (AHP) (14.9%) and fuzzy methods (12.9%); crop simulation models (9.9%) and machine learning related methods (25.7%) are gaining popularity over traditional methods. The MCDM methods, namely AHP and fuzzy, are commonly applied to LSA while crop models and machine learning related methods are gaining popularity. A total of 67 parameters from climatic, hydrology, soil, socio-economic and landscape properties are essential in LSA. Unavailability and the inclusion of categorical datasets from social sources is a challenge. Using big data and Internet of Things (IoT) improves the accuracy and reliability of LSA methods. The review expects to provide researchers and decision-makers with the most robust methods and standard parameters required in developing LSA for NUS. Qualitative and quantitative approaches must be integrated into unique hybrid land evaluation systems to improve LSA

    Evaluation of Land Suitability Methods with Reference to Neglected and Underutilised Crop Species: A Scoping Review

    No full text
    In agriculture, land use and land classification address questions such as “where”, “why” and “when” a particular crop is grown within a particular agroecology. To date, there are several land suitability analysis (LSA) methods, but there is no consensus on the best method for crop suitability analysis. We conducted a scoping review to evaluate methodological strategies for LSA. Secondary to this, we assessed which of these would be suitable for neglected and underutilised crop species (NUS). The review classified LSA methods reported in articles as traditional (26.6%) and modern (63.4%). Modern approaches, including multi-criteria decision-making (MCDM) methods such as analytical hierarchy process (AHP) (14.9%) and fuzzy methods (12.9%); crop simulation models (9.9%) and machine learning related methods (25.7%) are gaining popularity over traditional methods. The MCDM methods, namely AHP and fuzzy, are commonly applied to LSA while crop models and machine learning related methods are gaining popularity. A total of 67 parameters from climatic, hydrology, soil, socio-economic and landscape properties are essential in LSA. Unavailability and the inclusion of categorical datasets from social sources is a challenge. Using big data and Internet of Things (IoT) improves the accuracy and reliability of LSA methods. The review expects to provide researchers and decision-makers with the most robust methods and standard parameters required in developing LSA for NUS. Qualitative and quantitative approaches must be integrated into unique hybrid land evaluation systems to improve LSA

    Multi-criteria suitability analysis for neglected and underutilised crop species in South Africa

    No full text
    The validation data for sorghum, cowpea, taro and amaranths, and the data from the South African Quaternary Catchments database

    S1 File for "Multi-criteria suitability analysis for neglected and underutilised crop species in South Africa"

    No full text
    R script for "Multi-criteria suitability analysis for neglected and underutilised crop species in South Africa"
    corecore