10 research outputs found

    Genotypic characterisation of Avian paramyxovirus type-1 viruses isolated from aquatic birds in Uganda

    Get PDF
    Avian paramyxovirus type-1 (APMV-1) viruses of the lentogenic pathotypes are often isolated from wild aquatic birds and may mutate to high pathogenicity when they cross into poultry and cause debilitating Newcastle disease. This study characterised AMPV-1 isolated from fresh faecal droppings from wild aquatic birds roosting sites in Uganda. Fresh faecal samples from wild aquatic birds at several waterbodies in Uganda were collected and inoculated into 9–10-day-old embryonated chicken eggs. After isolation, the viruses were confirmed as APMV-1 by APMV-1-specific polymerase chain reaction (PCR). The cleavage site of the fusion protein gene for 24 representative isolates was sequenced and phylogenetically analysed and compared with representative isolates of the different APMV-1 genotypes in the GenBank database. In total, 711 samples were collected from different regions in the country from which 72 isolates were recovered, giving a prevalence of 10.1%. Sequence analysis of 24 isolates revealed that the isolates were all lentogenic, with the typical 111GGRQGR’L117 avirulent motif. Twenty-two isolates had similar amino acid sequences at the cleavage site, which were different from the LaSota vaccine strain by a silent nucleotide substitution T357C. Two isolates, NDV/waterfowl/Uganda/MU150/2011 and NDV/waterfowl/Uganda/MU186/2011, were different from the rest of the isolates in a single amino acid, with aspartate and alanine at positions 124 and 129, respectively. The results of this study revealed that Ugandan aquatic birds indeed harbour APMV-1 that clustered with class II genotype II strains and had limited genetic diversity

    Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda.

    Get PDF
    The intention of this study was to identify the bacterial pathogens infecting Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish), and to establish the antibiotic susceptibility of fish bacteria in Uganda. A total of 288 fish samples from 40 fish farms (ponds, cages, and tanks) and 8 wild water sites were aseptically collected and bacteria isolated from the head kidney, liver, brain and spleen. The isolates were identified by their morphological characteristics, conventOccurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda.publishedVersio

    Challenges and Solutions to Viral Diseases of Finfish in Marine Aquaculture

    Get PDF
    Aquaculture is the fastest food-producing sector in the world, accounting for one-third of global food production. As is the case with all intensive farming systems, increase in infectious diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases cause high economic losses in marine aquaculture. We provide an overview of the major challenges limiting the control and prevention of viral diseases in marine fish farming, as well as highlight potential solutions. The major challenges include increase in the number of emerging viral diseases, wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and expertise, transportation of virus contaminated ballast water, and international trade. The proposed solutions to these problems include developing biosecurity policies at global and national levels, implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools, disease surveillance, as well as promoting the use of good husbandry and management practices. A multifaceted approach combining several control strategies would provide more effective long-lasting solutions to reduction in viral infections in marine aquaculture than using a single disease control approach like vaccination alone

    Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda

    No full text
    Abstract The intention of this study was to identify the bacterial pathogens infecting Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish), and to establish the antibiotic susceptibility of fish bacteria in Uganda. A total of 288 fish samples from 40 fish farms (ponds, cages, and tanks) and 8 wild water sites were aseptically collected and bacteria isolated from the head kidney, liver, brain and spleen. The isolates were identified by their morphological characteristics, conventional biochemical tests and Analytical Profile Index test kits. Antibiotic susceptibility of selected bacteria was determined by the Kirby-Bauer disc diffusion method. The following well-known fish pathogens were identified at a farm prevalence of; Aeromonas hydrophila (43.8%), Aeromonas sobria (20.8%), Edwardsiella tarda (8.3%), Flavobacterium spp. (4.2%) and Streptococcus spp. (6.3%). Other bacteria with varying significance as fish pathogens were also identified including Plesiomonas shigelloides (25.0%), Chryseobacterium indoligenes (12.5%), Pseudomonas fluorescens (10.4%), Pseudomonas aeruginosa (4.2%), Pseudomonas stutzeri (2.1%), Vibrio cholerae (10.4%), Proteus spp. (6.3%), Citrobacter spp. (4.2%), Klebsiella spp. (4.2%) Serratia marcescens (4.2%), Burkholderia cepacia (2.1%), Comamonas testosteroni (8.3%) and Ralstonia picketti (2.1%). Aeromonas spp., Edwardsiella tarda and Streptococcus spp. were commonly isolated from diseased fish. Aeromonas spp. (n = 82) and Plesiomonas shigelloides (n = 73) were evaluated for antibiotic susceptibility. All isolates tested were susceptible to at-least ten (10) of the fourteen antibiotics evaluated. High levels of resistance were however expressed by all isolates to penicillin, oxacillin and ampicillin. This observed resistance is most probably intrinsic to those bacteria, suggesting minimal levels of acquired antibiotic resistance in fish bacteria from the study area. To our knowledge, this is the first study to establish the occurrence of several bacteria species infecting fish; and to determine antibiotic susceptibility of fish bacteria in Uganda. The current study provides baseline information for future reference and fish disease management in the country

    Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda.

    Get PDF
    The intention of this study was to identify the bacterial pathogens infecting Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish), and to establish the antibiotic susceptibility of fish bacteria in Uganda. A total of 288 fish samples from 40 fish farms (ponds, cages, and tanks) and 8 wild water sites were aseptically collected and bacteria isolated from the head kidney, liver, brain and spleen. The isolates were identified by their morphological characteristics, conven

    Molecular detection of tilapia lake virus (TiLV) genome in Nile tilapia (Oreochromis niloticus) from Lake Victoria

    No full text
    Proceedings of the 35 scientific conference of the Tanzania Veterinary Association held at AICC, Arusha, December 2017.ilapia lake virus (TiLV) is an emerging pathogen of Tilapiines associated with high mortalities of wild and farmed tilapia posing great threat to the fishery industry worldwide. The virus has been reported in Israel, Ecuador, Colombia, Thailand, Egypt, Taiwan, India and Malaysia. In this study, a reverse transcription polymerase chain reaction (RT-PCR) assay was developed and used to detect TiLV genome in Nile tilapia from Lake Victoria. Nile tilapia samples were collected from the Tanzanian (108 fish) and Ugandan (83 fish) parts of Lake Victoria in 2015 and 2016, respectively. Samples were screened for TiLV by using RT-PCR and the PCR products were sequenced. The findings show that out of the 191 fish examined, 28 had PCR products showing the presence of TiLV genome. The TiLV nucleic acids were detected in the spleen (10.99%, N=191), head kidney (7.69%, N=65), heart (3.45%, N=29) and liver (0.71%, N=140) samples while no PCR amplification was detected in the brain by the developed RT-PCR method. Generally, the findings show that the lymphoid organs, mainly comprising of the head kidney and spleen had the highest number of samples with positive nucleic acids for TiLV followed by heart samples. On the contrary, the liver and brain that have previously been shown to be target organs during acute infection either did not have or had the lowest level of TiLV nucleic acids detected in the present study. All the 28 sequences retrieved had an average length of 768 bp. A blast analysis on NCBI showed that all sequences obtained were homologous to TiLV segment-2 sequences obtained from previous outbreaks in Israel and Thailand. To our knowledge, this is the first detection of TiLV subclinical infections in Nile tilapia in Lake Victoria, a none-outbreak area

    Molecular detection of tilapia lake virus (TiLV) genome in Nile tilapia (Oreochromis niloticus) from Lake Victoria

    No full text
    Proceedings of the 35 scientific conference of the Tanzania Veterinary Association held at AICC, Arusha, December 2017.ilapia lake virus (TiLV) is an emerging pathogen of Tilapiines associated with high mortalities of wild and farmed tilapia posing great threat to the fishery industry worldwide. The virus has been reported in Israel, Ecuador, Colombia, Thailand, Egypt, Taiwan, India and Malaysia. In this study, a reverse transcription polymerase chain reaction (RT-PCR) assay was developed and used to detect TiLV genome in Nile tilapia from Lake Victoria. Nile tilapia samples were collected from the Tanzanian (108 fish) and Ugandan (83 fish) parts of Lake Victoria in 2015 and 2016, respectively. Samples were screened for TiLV by using RT-PCR and the PCR products were sequenced. The findings show that out of the 191 fish examined, 28 had PCR products showing the presence of TiLV genome. The TiLV nucleic acids were detected in the spleen (10.99%, N=191), head kidney (7.69%, N=65), heart (3.45%, N=29) and liver (0.71%, N=140) samples while no PCR amplification was detected in the brain by the developed RT-PCR method. Generally, the findings show that the lymphoid organs, mainly comprising of the head kidney and spleen had the highest number of samples with positive nucleic acids for TiLV followed by heart samples. On the contrary, the liver and brain that have previously been shown to be target organs during acute infection either did not have or had the lowest level of TiLV nucleic acids detected in the present study. All the 28 sequences retrieved had an average length of 768 bp. A blast analysis on NCBI showed that all sequences obtained were homologous to TiLV segment-2 sequences obtained from previous outbreaks in Israel and Thailand. To our knowledge, this is the first detection of TiLV subclinical infections in Nile tilapia in Lake Victoria, a none-outbreak area

    The cichlid–Cichlidogyrus network: a blueprint for a model system of parasite evolution

    No full text
    corecore