81 research outputs found

    Age-related differences in pointing accuracy in familiar and unfamiliar environments

    Get PDF
    This study aimed to investigate age-related differences in spatial mental representations of familiar and unfamiliar places. Nineteen young adults (aged 18\u201323) and 19 older adults (aged 60\u201374), all living in the same Italian town, completed a set of visuospatial measures and then pointed in the direction of familiar landmarks in their town and in the direction of landmarks in an unknown environment studied on a map. Results showed that older adults were less accurate in the visuospatial tasks and in pointing at landmarks in an unfamiliar environment, but performed as well as the young adults when pointing to familiar places. Pointing performance correlated with visuospatial tests accuracy in both familiar and unfamiliar environments, while only pointing in an unknown environment correlated with visuospatial working memory (VSWM). The spatial representation of well-known places seems to be well preserved in older adults (just as well as in young adults), while it declines for unfamiliar environments. Spatial abilities sustain the mental representations of both familiar and unfamiliar environments, while the support of VSWM resources is only needed for the latter

    Trajectories across the healthy adult lifespan on sense of direction, spatial anxiety, and attitude in exploring places

    Get PDF
    Introduction: Self-evaluations about orientation and navigation in the environment contribute to individual differences in spatial cognition. Evidence suggests that they may change, even slightly, with the progression of adulthood. It is necessary to improve the framing of environment-related subjective self-evaluations in adulthood and aging by examining how they change and the factors related to them. Therefore, this study aimed to examine the developmental trajectories of sense of direction, spatial anxiety, and attitude in exploring place across the adult lifespan while also considering gender and education. Materials and methods: A sample of 1,946 participants (1,068 women), aged 18–87 years, completed the sense of direction and spatial representation, spatial anxiety, and attitude in exploring scales. Results: The regression models showed a linear increase in sense of direction with age, stable spatial anxiety until age 66 years when anxiety began increasing, and a stable attitude in exploring with a deflection by age 71 years. Gender played a role in all three types of self-evaluations, with men reporting higher ratings in sense of direction and attitude toward exploring (especially in older men), and lower levels of spatial anxiety than women did. Education also played a role, with higher education years associated with lower ratings in spatial anxiety and a higher sense of direction, nullifying gender differences in the latter. Discussion: These results offer, in the spatial cognition framework, a better understanding of how specific environment-related self-evaluations develop with age and related factors, such as education. This underscores the importance of enhancing them, particularly in women and older adults

    Investigating the different domains of environmental knowledge acquired from virtual navigation and their relationship to cognitive factors and wayfinding inclinations

    Get PDF
    When learning an environment from virtual navigation people gain knowledge about landmarks, their locations, and the paths that connect them. The present study newly aimed to investigate all these domains of knowledge and how cognitive factors such as visuospatial abilities and wayfinding inclinations might support virtual passive navigation. A total of 270 participants (145 women) were tested online. They: (i) completed visuospatial tasks and answered questionnaires on their wayfinding inclinations; and (ii) learnt a virtual path. The environmental knowledge they gained was assessed on their free recall of landmarks, their egocentric and allocentric pointing accuracy (location knowledge), and their performance in route direction and landmark location tasks (path knowledge). Visuospatial abilities and wayfinding inclinations emerged as two separate factors, and environmental knowledge as a single factor. The SEM model showed that both visuospatial abilities and wayfinding inclinations support the environmental knowledge factor, with similar pattern of relationships in men and women. Overall, factors related to the individual are relevant to the environmental knowledge gained from an online virtual passive navigation

    Differences in Encoding Strategy as a Potential Explanation for Age-Related Decline in Place Recognition Ability

    Get PDF
    The ability to recognise places is known to deteriorate with advancing age. In this study, we investigated the contribution of age-related changes in spatial encoding strategies to declining place recognition ability. We recorded eye movements while younger and older adults completed a place recognition task first described by Muffato et al. (2019). Participants first learned places, which were defined by an array of four objects, and then decided whether the next place they were shown was the same or different to the one they learned. Places could be shown from the same spatial perspective as during learning or from a shifted perspective (30° or 60°). Places that were different to those during learning were changed either by substituting an object in the place with a novel object or by swapping the locations of two objects. We replicated the findings of Muffato et al. (2019) showing that sensitivity to detect changes in a place declined with advancing age and declined when the spatial perspective was shifted. Additionally, older adults were particularly impaired on trials in which object locations were swapped; however, they were not differentially affected by perspective changes compared to younger adults. During place encoding, older adults produced more fixations and saccades, shorter fixation durations, and spent less time looking at objects compared to younger adults. Further, we present an analysis of gaze chaining, designed to capture spatio-temporal aspects of gaze behaviour. The chaining measure was a significant predictor of place recognition performance. We found significant differences between age groups on the chaining measure and argue that these differences in gaze behaviour are indicative of differences in encoding strategy between age groups. In summary, we report a direct replication of Muffato et al. (2019) and provide evidence for age-related differences in spatial encoding strategies, which are related to place recognition performance

    Evidence for age-related deficits in object-location binding during place recognition.

    Get PDF
    Deciding whether a place is the same or different than places encountered previously is a common task in daily navigation which requires to develop knowledge about the locations of objects (object-location binding) and to recognize places from different perspectives. These abilities rely on hippocampal functioning which is susceptible to increasing age. Thus, the question of the present study is how they both together impact on place recognition in aging. Forty people aged 20-29, 44 aged 60-69, and 32 aged 70-79 were presented with places consisting of four different objects during the encoding phase. In the test phase, they were then presented with a second place and had to decide whether it was the same or different. Test places were presented from different perspectives (0°, 30°, 60°) and with different object conditions (same, a swap of two objects, a substitution with a novel object). The sensitivity for detecting changes (d') decreased from 20-29 to 60-69 and to 70-79 years old, and with increasing perspective shifts. Importantly, older adults were less sensitive to object swapping than to object substitution, while young participants did not show any difference. Overall, these results suggest specific age-related difficulties in object-location binding in the context of place recognition

    Virtual environments as memory training devices in navigational tasks for older adults.

    Get PDF
    Cognitive training approaches using virtual environments (VEs) might counter age-related visuospatial memory decline and associated difficulties in wayfinding. However, the effects of the visual design of a VE in route learning are not fully understood. Therefore, we created a custom-designed VE optimized for route learning, with adjusted levels of realism and highlighted landmark locations (MixedVE). Herein we tested participants' route recall performance in identifying direction of turn at the intersection with this MixedVE against two baseline alternatives (AbstractVE, RealisticVE). An older vs. a younger group solved the tasks in two stages (immediate vs. delayed recall by one week). Our results demonstrate that the MixedVE facilitates better recall accuracy than the other two VEs for both age groups. Importantly, this pattern persists a week later. Additionally, our older participants were mostly overconfident in their route recall performance, but the MixedVE moderated this potentially detrimental overconfidence. Before the experiment, participants clearly preferred the RealisticVE, whereas after the experiment, most of the younger, and many of the older participants, preferred the MixedVE. Taken together, our findings provide insights into the importance of tailoring visualization design in route learning with VEs. Furthermore, we demonstrate the great potential of the MixedVE and by extension, of similar VEs as memory training devices for route learning, especially for older participants

    The Quest for Orthologs benchmark service and consensus calls in 2020.

    Get PDF
    The identification of orthologs-genes in different species which descended from the same gene in their last common ancestor-is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases

    Ensembl Genomes 2022: an expanding genome resource for non-vertebrates

    Get PDF
    Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here we present our largest increase in plant, metazoan and fungal genomes since the project’s inception creating one of the world’s most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We also detail our new efforts in gene annotation, our emerging support for pangenome analysis and efforts to accelerate data dissemination through the Ensembl Rapid Release resource. We also present our new AlphaFold visualisation. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl’s release cycle

    Sequencing of the Sea Lamprey (Petromyzon marinus) Genome Provides Insights into Vertebrate Evolution

    Get PDF
    Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms
    corecore