62 research outputs found

    Cytotoxic effects of curcumin on osteosarcoma cell lines

    Get PDF
    Summary: Curcumin (diferuloylmethane), one of the main components of the Indian spice turmeric, is known to possess potent anti-inflammatory and anti-oxidant properties. In addition, curcumin has also been shown to have in vitro and in vivo efficacy against a variety of malignancies. In the current study we examined the cytotoxic effect of curcumin on seven osteosarcoma (OS) cell lines with varying degrees of in vivo metastatic potential. Curcumin inhibited the growth of all OS cell lines tested with half-maximal inhibitory concentration values ranging from 14.4 to 24.6Ī¼M. Growth inhibition was associated with a dose dependent increase in the number of apoptotic cells and accumulation of cells in the G2/M phase of the cell cycle. Curcumin treatment also resulted in cleavage of caspase-3 and poly adenosine diphosphate-ribose polymerase. Moreover, curcumin treatment was associated with an increase in cellular levels of the apoptotic B-cell leukemia/lymphoma 2 (Bcl-2)-associated X protein and a decrease in cellular content of the anti-apoptotic protein Bcl-2. In addition, curcumin treatment also inhibited the migration of OS cell lines. These data indicate that the potent cytotoxic activity of curcumin on OS cell lines is mediated by induction of apoptotic processes. Thus, curcumin has potential to be a novel OS chemotherapeutic agen

    Cytotoxic effects of curcumin on osteosarcoma cell lines

    Get PDF
    Summary: Curcumin (diferuloylmethane), one of the main components of the Indian spice turmeric, is known to possess potent anti-inflammatory and anti-oxidant properties. In addition, curcumin has also been shown to have in vitro and in vivo efficacy against a variety of malignancies. In the current study we examined the cytotoxic effect of curcumin on seven osteosarcoma (OS) cell lines with varying degrees of in vivo metastatic potential. Curcumin inhibited the growth of all OS cell lines tested with half-maximal inhibitory concentration values ranging from 14.4 to 24.6Ī¼M. Growth inhibition was associated with a dose dependent increase in the number of apoptotic cells and accumulation of cells in the G2/M phase of the cell cycle. Curcumin treatment also resulted in cleavage of caspase-3 and poly adenosine diphosphate-ribose polymerase. Moreover, curcumin treatment was associated with an increase in cellular levels of the apoptotic B-cell leukemia/lymphoma 2 (Bcl-2)-associated X protein and a decrease in cellular content of the anti-apoptotic protein Bcl-2. In addition, curcumin treatment also inhibited the migration of OS cell lines. These data indicate that the potent cytotoxic activity of curcumin on OS cell lines is mediated by induction of apoptotic processes. Thus, curcumin has potential to be a novel OS chemotherapeutic agen

    Taurolidine: a novel anti-neoplastic agent induces apoptosis of osteosarcoma cell lines

    Get PDF
    Summary: Taurolidine, the active agent of TaurolinĀ®, is a broad spectrum anti-biotic that has been used for over 15years for the treatment of severe surgical infections. Recently, taurolidine has been shown to possess anti-neoplastic properties in vitro and in vivo against a variety of cancers including ovarian, colon and prostate. In this study we assessed the cytotoxic activity of taurolidine against human osteosarcoma (OS) cell lines and normal human bone cells. Treatment with taurolidine inhibited the growth of all ten osteosarcoma cell lines tested and taurolidine was equally potent against cell lines with and without distinct genetic defects (i.e. p53, Rb). Moreover, taurolidine-induced growth inhibition was found to be associated with a dose dependent increase in the number of apoptotic cells and apoptosis was shown to be caspase-dependent. Taurolidine treatment was also found to inhibit adhesion of OS cell lines. Compared to OS cell lines, normal bone cells in primary culture were found to be less sensitive to the cytotoxic and anti-adhesive effects of taurolidine. These data indicate that taurolidine possesses potent anti-neoplastic activity against osteosarcoma cell lines and may have potential as a novel OS chemotherapeutic agen

    A novel method for assessing adherent single-cell stiffness in tension: design and testing of a substrate-based live cell functional imaging device

    Get PDF
    Various micro-devices have been used to assess single cell mechanical properties. Here, we designed and implemented a novel, mechanically actuated, two dimensional cell culture system that enables a measure of cell stiffness based on quantitative functional imaging of cell-substrate interaction. Based on parametric finite element design analysis, we fabricated a soft (5kPa) polydimethylsiloxane (PDMS) cell substrate coated with collagen-I and fluorescent micro-beads, thus providing a favorable terrain for cell adhesion and for substrate deformation quantification, respectively. We employed a real-time tracking system that analyzes high magnification images of living cells under stretch, and compensates for gross substrate motions by dynamic adjustment of the microscope stage. Digital image correlation (DIC) was used to quantify substrate deformation beneath and surrounding the cell, leading to an estimate of cell stiffness based upon the ability of the cell to resist the applied substrate deformation. Sensitivity of the system was tested using chemical treatments to both "softenā€ and "stiffenā€ the cell cytoskeleton with either 0.5Ī¼g/ml Cytochalasin-D or 3% Glutaraldehyde, respectively. Results indicate that untreated osteosarcoma cells (SAOS-2) exhibit a 1.5ā€‰Ā±ā€‰0.7% difference in strain from an applied target substrate strain of 8%. Compared to untreated cells, those treated with Cyochalasin-D passively followed the substrate (0.5ā€‰Ā±ā€‰0.5%, pā€‰<ā€‰0.001), whereas Glutaraldehyde enhanced cellular stiffness and the ability to resist the substrate deformation (2.9ā€‰Ā±ā€‰1.6%, pā€‰<ā€‰0.001). Nano-indentation testing showed differences in cell stiffness based on culture treatment, consistent with DIC findings. Our results indicate that mechanics and image analysis approaches do hold promise as a method to quantitatively assess tensile cell constitutive propertie

    Cellular Internalization of Human Calcitonin Derived Peptides in MDCK Monolayers: A Comparative Study with Tat(47-57) and Penetratin(43-58)

    Get PDF
    Purpose. The objective of this study was to evaluate key motif requirements of human calcitonin (hCT)-derived peptides for the permeation through the plasma membrane of MDCK monolayers, as epithelial model. Methods. Truncated and sequence-modified fluorescent-labeled hCT-derived peptides were synthesized through Fmoc chemistry. Peptide uptake by confluent MDCK was observed by confocal laser scanning microscopy. The cytotoxic effect of the peptides on cellular integrity was followed by LDH release. For direct comparison we covered the cellular uptake of established cell penetrating peptides, Tat(47-57) and penetratin(43-58). Results. Truncated sequences of hCT, from hCT(9-32) to hCT(18-32), penetrated the plasma membrane and demonstrated a sectoral, punctuated cytoplasmic distribution. The uptake process appeared to be temperature-, time- and concentration-dependent. Amino acid modifications of hCT(18-32) indicated that both the proline in position 23 and the positive charge of lysine in position 18 are crucial for peptide uptake. The reverse sequence hCT(32-18) did not penetrate the membrane, indicating the importance of sequence orientation. Tat(47-57) and penetratin(43-58) showed a similar punctuated cytoplasmic distribution in MDCK and HeLa cell lines. No relevant toxicity was observed. Conclusions. Selected hCT-derived peptides have cell penetrating properties. The uptake mechanism seems to involve an endocytic pathwa

    Targeting Ī±vĪ²3 and Ī±vĪ²5 integrins inhibits pulmonary metastasis in an intratibial xenograft osteosarcoma mouse model

    Full text link
    Osteosarcoma is an aggressive bone cancer that has a high propensity for metastasis to the lungs. Patients with metastatic disease face a very poor prognosis. Therefore, novel therapeutics, efficiently suppressing the metastatic process, are urgently needed. Integrins play a pivotal role in tumor cell adhesion, motility and metastasis. Here, we evaluated Ī±vĪ²3 and Ī±vĪ²5 integrin inhibition with cilengitide as a novel metastasis-suppressive therapeutic approach in osteosarcoma. Immunohistochemical analysis of Ī±vĪ²3 and Ī±vĪ²5 integrins expression in a tissue microarray of tumor specimens collected from osteosarcoma patients revealed that Ī±vĪ²5 integrin is mainly found on tumor cells, whereas Ī±vĪ²3 is predominantly expressed by stromal cells. In vitro functional assays demonstrated that cilengitide dose-dependently inhibited de novo adhesion, provoked detachment and inhibited migration of osteosarcoma cell lines. Cilengitide induced a decline in cell viability, blocked the cell cycle in the G1 phase and caused anoikis by activation of the Hippo pathway. In a xenograft orthotopic mouse model cilengitide minimally affected intratibial primary tumor growth but, importantly, suppressed pulmonary metastasis. The data demonstrate that targeting Ī±vĪ²3 and Ī±vĪ²5 integrins in osteosarcoma should be considered as a novel therapeutic option for patients with metastatic disease

    Caprin-1, a novel Cyr61-interacting protein, promotes osteosarcoma tumor growth and lung metastasis in mice

    Full text link
    Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. More than 30% of patients develop lung metastasis, which is the leading cause of mortality. Recently, the extracellular matrix protein Cyr61 has been recognized as a malignancy promoting protein in OS mouse model with prognostic potential in human OS. In this study, we aimed at the identification of novel Cyr61-interacting proteins. Here we report that Cyr61 associates with Caprin-1, and confocal microscopy showed that stable ectopic expression of Caprin-1 leads to the formation of stress granules containing Caprin-1 and Cyr61, confers resistance to cisplatin-induced apoptosis, and resulted in constitutive phosphorylation of Akt and ERK1/2. Importantly, ectopic expression of Caprin-1 dramatically enhanced primary tumor growth, remarkably increased lung metastatic load in a SCID intratibial OS mouse model, and decreased significantly (p<0.0018) the survival of the mice. Although Caprin-1 expression, evaluated with a tissue microarray including samples from 59 OS patients, failed to be an independent predictor for the patients' outcome in this limited cohort of patients, increased Caprin-1 expression indicated a tendency to shortened overall survival, and more strikingly, Cyr61/Caprin-1 co-expression was associated with worse survival than that observed for patients with tumors expressing either Cyr61 or Caprin-1 alone or none of these proteins. The findings imply that Caprin-1 may have a metastasis promoting role in OS and show that through resistance to apoptosis and via the activation of Akt and ERK1/2 pathways, Caprin-1 is significantly involved in the development of OS metastasis

    Expression of the chemokine receptor CXCR7 in CXCR4-expressing human 143B osteosarcoma cells enhances lung metastasis of intratibial xenografts in SCID mice

    Get PDF
    More effective treatment of metastasizing osteosarcoma with a current mean 5-year survival rate of less than 20% requires more detailed knowledge on mechanisms and key regulatory molecules of the complex metastatic process. CXCR4, the receptor of the chemokine CXCL12, has been reported to promote tumor progression and metastasis in osteosarcoma. CXCR7 is a recently deorphanized CXCL12-scavenging receptor with so far not well-defined functions in tumor biology. The present study focused on a potential malignancy enhancing function of CXCR7 in interaction with CXCR4 in osteosarcoma, which was investigated in an intratibial osteosarcoma model in SCID mice, making use of the human 143B osteosarcoma cell line that spontaneously metastasizes to the lung and expresses endogenous CXCR4. 143B osteosarcoma cells stably expressing LacZ (143B-LacZ cells) were retrovirally transduced with a gene encoding HA-tagged CXCR7 (143B-LacZ-X7-HA cells). 143B-LacZ-X7-HA cells coexpressing CXCR7 and CXCR4 exhibited CXCL12 scavenging and enhanced adhesion to IL-1Ī²-activated HUVEC cells compared to 143B-LacZ cells expressing CXCR4 alone. SCID mice intratibially injected with 143B-LacZ-X7-HA cells had significantly (p<0.05) smaller primary tumors, but significantly (p<0.05) higher numbers of lung metastases than mice injected with 143B-LacZ cells. Unexpectedly, 143B-LacZ-X7-HA cells, unlike 143B-LacZ cells, also metastasized with high incidence to the auriculum cordis. In conclusion, expression of the CXCL12 scavenging receptor CXCR7 in the CXCR4-expressing human 143B osteosarcoma cell line enhances its metastatic activity in intratibial primary tumors in SCID mice that predominantly metastasize to the lung and thereby closely mimic the human disease. These findings point to CXCR7 as a target, complementary to previously proposed CXCR4, for more effective metastasis-suppressive treatment in osteosarcoma
    • ā€¦
    corecore