48 research outputs found
Activation of peroxisome proliferator-activated receptors by chlorinated hydrocarbons and endogenous steroids.
Trichloroethylene (TCE) and related hydrocarbons constitute an important class of environmental pollutants whose adverse effects on liver, kidney, and other tissues may, in part, be mediated by peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors belonging to the steroid receptor superfamily. Activation of PPAR induces a dramatic proliferation of peroxisomes in rodent hepatocytes and ultimately leads to hepatocellular carcinoma. To elucidate the role of PPAR in the pathophysiologic effects of TCE and its metabolites, it is important to understand the mechanisms whereby PPAR is activated both by TCE and endogenous peroxisome proliferators. The investigations summarized in this article a) help clarify the mechanism by which TCE and its metabolites induce peroxisome proliferation and b) explore the potential role of the adrenal steroid and anticarcinogen dehydroepiandrosterone 3beta-sulfate (DHEA-S) as an endogenous PPAR activator. Transient transfection studies have demonstrated that the TCE metabolites trichloroacetate and dichloroacetate both activate PPAR alpha, a major liver-expressed receptor isoform. TCE itself was inactive when tested over the same concentration range, suggesting that its acidic metabolites mediate the peroxisome proliferative potential of TCE. Although DHEA-S is an active peroxisome proliferator in vivo, this steroid does not stimulate trans-activation of PPAR alpha or of two other PPAR isoforms, gamma and delta/Nuc1, when evaluated in COS-1 cell transfection studies. To test whether PPAR alpha mediates peroxisomal gene induction by DHEA-S in intact animals, DHEA-S has been administered to mice lacking a functional PPAR alpha gene. DHEA-S was thus shown to markedly increase hepatic expression of two microsomal P4504A proteins associated with the peroxisomal proliferative response in wild-type mice. In contrast, DHEA-S did not induce these hepatic proteins in PPAR alpha-deficient mice. Thus, despite its unresponsiveness to steroidal peroxisome proliferators in transfection assays, PPAR alpha is an obligatory mediator of DHEA-S-stimulated hepatic peroxisomal gene induction. DHEA-S, or one of its metabolites, may thus serve as an important endogenous regulator of liver peroxisomal enzyme expression
Frequency and genotypic distribution of GB virus C (GBV-C) among Colombian population with Hepatitis B (HBV) or Hepatitis C (HCV) infection
<p>Abstract</p> <p>Background</p> <p>GB virus C (GBV-C) is an enveloped positive-sense ssRNA virus belonging to the <it>Flaviviridae </it>family. Studies on the genetic variability of the GBV-C reveals the existence of six genotypes: genotype 1 predominates in West Africa, genotype 2 in Europe and America, genotype 3 in Asia, genotype 4 in Southwest Asia, genotype 5 in South Africa and genotype 6 in Indonesia. The aim of this study was to determine the frequency and genotypic distribution of GBV-C in the Colombian population.</p> <p>Methods</p> <p>Two groups were analyzed: i) 408 Colombian blood donors infected with HCV (n = 250) and HBV (n = 158) from Bogotá and ii) 99 indigenous people with HBV infection from Leticia, Amazonas. A fragment of 344 bp from the 5' untranslated region (5' UTR) was amplified by nested RT PCR. Viral sequences were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 160). Bayesian phylogenetic analyses were conducted using Markov chain Monte Carlo (MCMC) approach to obtain the MCC tree using BEAST v.1.5.3.</p> <p>Results</p> <p>Among blood donors, from 158 HBsAg positive samples, eight 5.06% (n = 8) were positive for GBV-C and from 250 anti-HCV positive samples, 3.2%(n = 8) were positive for GBV-C. Also, 7.7% (n = 7) GBV-C positive samples were found among indigenous people from Leticia. A phylogenetic analysis revealed the presence of the following GBV-C genotypes among blood donors: 2a (41.6%), 1 (33.3%), 3 (16.6%) and 2b (8.3%). All genotype 1 sequences were found in co-infection with HBV and 4/5 sequences genotype 2a were found in co-infection with HCV. All sequences from indigenous people from Leticia were classified as genotype 3. The presence of GBV-C infection was not correlated with the sex (p = 0.43), age (p = 0.38) or origin (p = 0.17).</p> <p>Conclusions</p> <p>It was found a high frequency of GBV-C genotype 1 and 2 in blood donors. The presence of genotype 3 in indigenous population was previously reported from Santa Marta region in Colombia and in native people from Venezuela and Bolivia. This fact may be correlated to the ancient movements of Asian people to South America a long time ago.</p
Differential gene expression in mouse primary hepatocytes exposed to the peroxisome proliferator-activated receptor α agonists
BACKGROUND: Fibrates are a unique hypolipidemic drugs that lower plasma triglyceride and cholesterol levels through their action as peroxisome proliferator-activated receptor alpha (PPARα) agonists. The activation of PPARα leads to a cascade of events that result in the pharmacological (hypolipidemic) and adverse (carcinogenic) effects in rodent liver. RESULTS: To understand the molecular mechanisms responsible for the pleiotropic effects of PPARα agonists, we treated mouse primary hepatocytes with three PPARα agonists (bezafibrate, fenofibrate, and WY-14,643) at multiple concentrations (0, 10, 30, and 100 μM) for 24 hours. When primary hepatocytes were exposed to these agents, transactivation of PPARα was elevated as measured by luciferase assay. Global gene expression profiles in response to PPARα agonists were obtained by microarray analysis. Among differentially expressed genes (DEGs), there were 4, 8, and 21 genes commonly regulated by bezafibrate, fenofibrate, and WY-14,643 treatments across 3 doses, respectively, in a dose-dependent manner. Treatments with 100 μM of bezafibrate, fenofibrate, and WY-14,643 resulted in 151, 149, and 145 genes altered, respectively. Among them, 121 genes were commonly regulated by at least two drugs. Many genes are involved in fatty acid metabolism including oxidative reaction. Some of the gene changes were associated with production of reactive oxygen species, cell proliferation of peroxisomes, and hepatic disorders. In addition, 11 genes related to the development of liver cancer were observed. CONCLUSION: Our results suggest that treatment of PPARα agonists results in the production of oxidative stress and increased peroxisome proliferation, thus providing a better understanding of mechanisms underlying PPARα agonist-induced hepatic disorders and hepatocarcinomas
The Evolution of the Major Hepatitis C Genotypes Correlates with Clinical Response to Interferon Therapy
Patients chronically infected with hepatitis C virus (HCV) require significantly different durations of therapy and achieve substantially different sustained virologic response rates to interferon-based therapies, depending on the HCV genotype with which they are infected. There currently exists no systematic framework that explains these genotype-specific response rates. Since humans are the only known natural hosts for HCV-a virus that is at least hundreds of years old-one possibility is that over the time frame of this relationship, HCV accumulated adaptive mutations that confer increasing resistance to the human immune system. Given that interferon therapy functions by triggering an immune response, we hypothesized that clinical response rates are a reflection of viral evolutionary adaptations to the immune system.We have performed the first phylogenetic analysis to include all available full-length HCV genomic sequences (n = 345). This resulted in a new cladogram of HCV. This tree establishes for the first time the relative evolutionary ages of the major HCV genotypes. The outcome data from prospective clinical trials that studied interferon and ribavirin therapy was then mapped onto this new tree. This mapping revealed a correlation between genotype-specific responses to therapy and respective genotype age. This correlation allows us to predict that genotypes 5 and 6, for which there currently are no published prospective trials, will likely have intermediate response rates, similar to genotype 3. Ancestral protein sequence reconstruction was also performed, which identified the HCV proteins E2 and NS5A as potential determinants of genotype-specific clinical outcome. Biochemical studies have independently identified these same two proteins as having genotype-specific abilities to inhibit the innate immune factor double-stranded RNA-dependent protein kinase (PKR).An evolutionary analysis of all available HCV genomes supports the hypothesis that immune selection was a significant driving force in the divergence of the major HCV genotypes and that viral factors that acquired the ability to inhibit the immune response may play a role in determining genotype-specific response rates to interferon therapy
Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family
Proposals are described for the assignment of recently reported viruses, infecting rodents, bats and other mammalian species, to new species within the Hepacivirus and Pegivirus genera (Family Flaviviridae). Assignments into 14 Hepacivirus species (Hepacivirus A to N) and 11 Pegivirus species (Pegivirus A to K) are based on phylogenetic relationships and sequence distances between conserved regions extracted from complete coding sequences of each proposed taxon. We propose that the species hepatitis C virus is renamed Hepacivirus C in order to acknowledge its unique historical position and so as to minimise confusion. Despite the newly documented genetic diversity of hepaciviruses and pegiviruses, members of these genera remain phylogenetically distinct, and differ in hepatotropism and the possession of a basic core protein; pegiviruses in general lack these features. However, other characteristics that were originally used to support their division into separate genera are no longer definitive; there is overlap between the two genera in the type of internal ribosomal entry site (IRES) and the presence of miR-122 sites in the 5'untranslated region (UTR), the predicted number of N-linked glycosylation sites in the envelope E1 and E2 proteins, the presence of poly U tracts in the 3' UTR and the propensity of viruses to establish a persistent infection. While all classified hepaciviruses and pegiviruses have mammalian hosts, the recent description of a hepaci-/pegi-like virus from a shark and the likely existence of further homologues in other non-mammalian species indicates that further species or genera remain to be defined in the future
Prevalence and genotypes of GB Virus C/Hepatitis G virus among blood donors in Central Brazil
A survey was conducted in a blood donor population of Central Brazil aiming to investigate the prevalence of GB virus C (GBV-C)/hepatitis G virus (HGV) infection and also to analyze the virus genotypes distribution. A total of 241 voluntary blood donors were interviewed at the State Blood Bank in Goiânia, State of Goiás, Brazil. Blood samples were collected and serum samples tested for GBV-C/HGV RNA by polymerase chain reaction. Genotypes were determined by restriction fragment length polymorphism (RFLP) analysis. Seventeen samples were GBV-C/HGV RNA-positive, resulting in a prevalence of 7.1% (95% CI: 4.2-11.1). A significant trend of GBV-C/HGV RNA positivity in relation to age was observed, with the highest prevalence in donors between 29-39 years old. Ten infected individuals were characterized by reporting parenteral (30%), sexual (18%), both (6%) and intrafamiliar (6%) transmission. However, 7 (40%) GBV-C/HGV RNA-positive donors did not mention any potential transmission route. RFLP analysis revealed the presence of genotypes 1 and 2 of GBV-C/HGV; more precisely, 10 (58.9%) samples were found belonging to the 2b subtype, 4 (23.5%) to the 2a subtype, and 3 (17.6%) to genotype 1. The present data indicate an intermediate endemicity of GBV-C/HGV infection among this blood donor population, and a predominant circulation of genotype 2 (subtype 2b) in Central Brazil