33,031 research outputs found

    Interference of Mycobacterium tuberculosis with macrophage responses

    Get PDF
    Tuberculosis, caused by Mycobacterium tuberculosis, has become an important health and economic burden, with more than four thousand people succumbing to the disease every day. Thus, there is an urgent need to understand the molecular basis of this pathogen's success in causing disease in humans, in order to develop new drugs superior to conventional drugs available at present. One reason why M. tuberculosis is such a dangerous microbe lies within its ability to survive within infected hosts, thereby efficiently circumventing host immune responses. Over the past few years, a number of mechanisms have been unravelled that are utilized by M. tuberculosis to survive within hosts and to avoid immune defence mechanisms. Several of these mechanisms have been described in this communication that may be useful for the development of novel compounds to treat tuberculosis

    Domain wall dynamics in a two-component Bose-Mott insulator

    Full text link
    We model the dynamics of two species of bosonic atoms trapped in an optical lattice within the Mott regime by mapping the system onto a spin model. A field gradient breaks the cloud into two domains. We study how the domain wall evolves under adiabatic and diabatic changes of this gradient. We determine the timescales for adiabaticity, and study how temperature evolves for slow ramps. We show that after large, sudden changes of the field gradient, the system does not equilibrate on typical experimental timescales. We find interesting spin dynamics even when the initial temperature is large compared to the super-exchange energy. We discuss the implication of our results for experiments wishing to use such a two-component system for thermometry, or as part of a cooling scheme.Comment: 6 pages, 5 figures Minor typographical errors corrected. Figure labels changed. Added concluding statement

    Single and two-stage selection on different indices in open nucleus breeding systems

    Get PDF

    Many-body physics in the radio frequency spectrum of lattice bosons

    Full text link
    We calculate the radio-frequency spectrum of a trapped cloud of cold bosonic atoms in an optical lattice. Using random phase and local density approximations we produce both trap averaged and spatially resolved spectra, identifying simple features in the spectra that reveal information about both superfluidity and correlations. Our approach is exact in the deep Mott limit and in the deep superfluid when the hopping rates for the two internal spin states are equal. It contains final state interactions, obeys the Ward identities (and the associated conservation laws), and satisfies the ff-sum rule. Motivated by earlier work by Sun, Lannert, and Vishveshwara [Phys. Rev. A \textbf{79}, 043422 (2009)], we also discuss the features which arise in a spin-dependent optical lattice.Comment: 6 pages, 4 figures, 13 subfigure

    Charge radius and dipole response of 11^{11}Li

    Get PDF
    We investigate the consistency of the measured charge radius and dipole response of 11^{11}Li within a three-body model. We show how these observables are related to the mean square distance between the 9^9Li core and the center of mass of the two valence neutrons. In this representation we find by considering the effect of smaller corrections that the discrepancy between the results of the two measurements is of the order of 1.5σ\sigma. We also investigate the sensitivity to the three-body structure of 11^{11}Li and find that the charge radius measurement favors a model with a 50% s-wave component in the ground state of the two-neutron halo, whereas the dipole response is consistent with a smaller s-wave component of about 25% value.Comment: 6 pages, 3 figure

    Examining the efficacy of a genotyping-by-sequencing technique for population genetic analysis of the mushroom Laccaria bicolor and evaluating whether a reference genome is necessary to assess homology

    Get PDF
    Given the diversity and ecological importance of Fungi, there is a lack of population genetic research on these organisms. The reason for this can be explained in part by their cryptic nature and difficulty in identifying genets. In addition the difficulty (relative to plants and animals) in developing molecular markers for fungal population genetics contributes to the lack of research in this area. This study examines the ability of restriction-site associated DNA (RAD) sequencing to generate SNPs in Laccaria bicolor. Eighteen samples of morphologically identified L. bicolor from the United States and Europe were selected for this project. The RAD sequencing method produced anywhere from 290 000 to more than 3 000 000 reads. Mapping these reads to the genome of L. bicolor resulted in 84 000-940 000 unique reads from individual samples. Results indicate that incorporation of non-L. bicolor taxa into the analysis resulted in a precipitous drop in shared loci among samples, suggests the potential of these methods to identify cryptic species. F-statistics were easily calculated, although an observable "noise" was detected when using the "All Loci" treatment versus filtering loci to those present in at least 50% of the individuals. The data were analyzed with tests of Hardy-Weinburg equilibrium, population genetic statistics (FIS and FST), and population structure analysis using the program Structure. The results provide encouraging feedback regarding the potential utility of these methods and their data for population genetic analysis. We were unable to draw conclusions of life history of L. bicolor populations from this dataset, given the small sample size. The results of this study indicate the potential of these methods to address population genetics and general life history questions in the Agaricales. Further research is necessary to explore the specific application of these methods in the Agaricales or other fungal groups
    corecore