26,818 research outputs found

    Magnetic field effects on the finite-frequency noise and ac conductance of a Kondo quantum dot out of equilibrium

    Full text link
    We present analytic results for the finite-frequency current noise and the nonequilibrium ac conductance for a Kondo quantum dot in presence of a magnetic field. Using the real-time renormalization group method, we determine the line shape close to resonances and show that while all resonances in the ac conductance are broadened by the transverse spin relaxation rate, the noise at finite field additionally involves the longitudinal rate as well as sharp kinks resulting in singular derivatives. Our results provide a consistent theoretical description of recent experimental data for the emission noise at zero magnetic field, and we propose the extension to finite field for which we present a detailed prediction.Comment: 21 pages, 13 figure

    Spin and orbital fluctuations in non-equilibrium transport through quantum dots: A renormalisation-group analysis

    Full text link
    We study non-equilibrium current and occupation probabilities of a two-orbital quantum dot. The couplings to the leads are allowed to be asymmetric and orbital dependent as it is generically the case in transport experiments on molecules and nanowires. Starting from a two-orbital Anderson model, we perform a generalised Schrieffer-Wolff transformation to derive an effective Kondo model. This generates an orbital potential scattering contribution which is of the same order as the spin exchange interaction. In a first perturbative analysis we identify a regime of negative differential conductance and a cascade resonance in the presence of an external magnetic field, which both originate from the non-equilibrium occupation of the orbitals. We then study the logarithmic enhancement of these signatures by means of a renormalisation-group treatment. We find that the orbital potential scattering qualitatively changes the renormalisation of the spin exchange couplings and strongly affects the differential conductance for asymmetric couplings.Comment: 6 pages, 4 figures, revised version as publishe

    A technique to investigate space maintenance tasks

    Get PDF
    Effects of space suit pressurization and weightlessness on performance decrement in space maintenance activit

    Ignition and combustion characteristics of metallized propellants

    Get PDF
    Research designed to develop detailed knowledge of the secondary atomization and ignition characteristics of aluminum slurry propellants was started. These processes are studied because they are the controlling factors limiting the combustion efficiency of aluminum slurry propellants in rocket applications. A burner and spray rig system allowing the study of individual slurry droplets having diameters from about 10 to 100 microns was designed and fabricated. The burner generates a near uniform high temperature environment from the merging of 72 small laminar diffusion flames above a honeycomb matrix. This design permits essentially adiabatic operation over a wide range of stoichiometries without danger of flashback. A single particle sizing system and velocimeter also were designed and assembled. Light scattered from a focused laser beam is related to the particle (droplet) size, while the particle velocity is determined by its transit time through the focal volume. Light from the combustion of aluminum is also sensed to determine if ignition was achieved. These size and velocity measurements will allow the determination of disruption and ignition times as functions of drop sizes and ambient conditions

    Chiral-odd generalized parton distributions, transversity decomposition of angular momentum, and tensor charges of the nucleon

    Full text link
    The forward limit of the chiral-odd generalized parton distributions (GPDs) and their lower moments are investigated within the framework of the chiral quark soliton model (CQSM), with particular emphasis upon the transversity decomposition of nucleon angular momentum proposed by Burkardt. A strong correlation between quark spin and orbital angular momentum inside the nucleon is manifest itself in the derived second moment sum rule within the CQSM, thereby providing with an additional support to the qualitative connection between chiral-odd GPDs and the Boer-Mulders effects. We further confirm isoscalar dominance of the corresponding first moment sum rule, which indicates that the Boer-Mulders functions for the uu- and dd-quarks have roughly equal magnitude with the same sign. Also made are some comments on the recent empirical extraction of the tensor charges of the nucleon by Anselmino et al. We demonstrate that a comparison of their result with any theoretical predictions must be done with great care, in consideration of fairly strong scale dependence of tensor charges, especially at lower renormalization scale.Comment: version to appear in Phys. Rev.
    • …
    corecore