8 research outputs found

    Using Near-Infrared Spectroscopy in Agricultural Systems

    Get PDF
    This chapter provides a review on the state of art of the use of the visible near-infrared (vis-NIR) spectroscopy technique to determine mineral nutrients, organic compounds, and other physical and chemical characteristics in samples from agricultural systems—such as plant tissues, soils, fruits, cocomposted sewage sludge and wastes, cereals, and forage and silage. Currently, all this information is needed to be able to carry out the appropriate fertilization of crops, to handle agricultural soils, determine the organoleptic characteristics of fruit and vegetable products, discover the characteristics of the various substrates obtained in composting processes, and characterize byproducts from the industrial sector. All this needs a large number of samples that must be analyzed; this is a time-consuming work, leading to high economic costs and, obviously, having a negative environmental impact owing to the production of noxious chemicals during the analyses. Therefore, the development of a fast, environmentally friendly, and cheaper method of analysis like vis-NIR is highly desirable. Our intention here is to introduce the main fundamentals of infrared reflectance spectroscopy, and to show that procedures like calibration and validation of data from vis-NIR spectra must be performed, and describe the parameters most commonly measured in the agricultural sector

    Chemical Composition and Polyphenol Compounds of Vaccinium floribundum Kunth (Ericaceae) from the Volcano Chimborazo Paramo (Ecuador)

    No full text
    Mortiño (Vaccinium floribundum Kunth) is considered a “superfruit” due to its antioxidant capacity and possible health benefits. To date, there is no known study that addresses the biochemical characterization of mortiño berries from the paramo of the Chimborazo volcano (Ecuador). So, the aim of this research was to evaluate for the first time the effect of the stage of development of the mortiño berries (two stages) and environment of origin (three sampling areas) on fruit quality. Polyphenol compounds were identified by high-performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometric (ESI-MSn) and quantified by high-performance liquid chromatography with a diode array detector (HPLC-DAD). Moreover, antioxidant properties (ABTS•+, and DPPH), sugar and organic acids, and minerals were examined. The main organic acids were quinic and citric acid, while glucose, fructose, sucrose, mannose, and sorbitol were the main sugars determined in the mortiño fruits. The main constituents of the mortiño berries included hydroxycinnamic acids (5-O-caffeoylquinic acid), flavonols (quercetin 3-hexoside, quercetin 5-hexoside, quercetin 3-pentoside, and quercetin-3-O-rhamnoside) and anthocyanins. Seven anthocyanins were identified: glycosides of cyanidin, delphinidin, petunidin, peonidin, and pelargonidin. The research confirms that the mortiño berries produced in the Ecuadorian paramo area are a valuable source of polyphenolics, rich in sugars and organic acids, and can be classified as a good source of microelements

    Aspectos de la genética molecular cunicola. (1ª parte)

    No full text
    corecore