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Abstract

This chapter provides a review on the state of art of the use of the visible near-infrared 
(vis-NIR) spectroscopy technique to determine mineral nutrients, organic compounds, 
and other physical and chemical characteristics in samples from agricultural systems—
such as plant tissues, soils, fruits, cocomposted sewage sludge and wastes, cereals, and 
forage and silage. Currently, all this information is needed to be able to carry out the 
appropriate fertilization of crops, to handle agricultural soils, determine the organoleptic 
characteristics of fruit and vegetable products, discover the characteristics of the vari-
ous substrates obtained in composting processes, and characterize byproducts from the 
industrial sector. All this needs a large number of samples that must be analyzed; this is a 
time-consuming work, leading to high economic costs and, obviously, having a negative 
environmental impact owing to the production of noxious chemicals during the analy-
ses. Therefore, the development of a fast, environmentally friendly, and cheaper method 
of analysis like vis-NIR is highly desirable. Our intention here is to introduce the main 
fundamentals of infrared reflectance spectroscopy, and to show that procedures like cali-
bration and validation of data from vis-NIR spectra must be performed, and describe the 
parameters most commonly measured in the agricultural sector.

Keywords: vis-NIR spectroscopy, calibration and validation methods, plant mineral 
analysis, fruit analysis, soil analysis, fruit organoleptic characteristics
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1. Introduction

One of the challenges of the twenty-first century is to achieve a more productive agriculture, 
while improving the safety and quality of food. The food industry has to feed a population 

that is in continuous increase, bearing in mind that these systems have to respect the environ-

ment, should optimize natural resources in each area, and anticipate changes in temperature 

and rainfall that will occur in the future as a result of climate change. Proper soil manage-

ment and fertilization of crops will be crucial to increasing the capacity of agriculture, to 

the provision of products of high added value, and to the protection of crops against pests 

and diseases. To do this, in each of the steps ranging from the production of fruits and veg-

etables in the field to the development of industrial products, it is necessary to determine a 
great number of physical and chemical parameters in the soil, plants, fruits, compost, and 

byproducts from food processing industries. Currently, the traditional techniques of analy-

sis of such samples are being replaced by spectroscopic techniques—one of which is visible 

near-infrared spectroscopy (vis-NIRS). This technique has a number of advantages over the 

traditional methods, as it (i) is a method of nondestructive analysis, (ii) does not pollute the 

environment, because it does not use chemical reagents, (iii) is cheap and fast, (iv) measures 

many parameters in a single analysis, and (v) can perform analyses in situ and online for a 

large number of samples per minute.

The aim of this chapter is to provide an updated review of the current state of vis-NIRS as a 

technique for the estimation of physical and chemical parameters in samples derived from 

agricultural systems, such as soils, plants, fruit, compost, and products derived from food 

processing industries. The chapter starts by describing the basic principles of this technique 

and the different ways in which the equipment can be calibrated, detailing the statistical tools 
that are useful to establish that the calibration and the estimation of the desired parameters 

are valid. We will describe the parameters that can be measured by vis-NIRS in samples, with 

the emphasis on soil, plants, fruit, compost, and byproducts from the industrial sector that 

processes the output of agricultural systems. A basic explanation of the parameters measured 

in these samples will be given, together with a description of how they are measured and the 

mathematical tools used, focusing on the most novel issues.

2. Fundamentals of infrared diffuse reflectance spectroscopy

Spectroscopy in the near infrared or NIRS (near-infrared reflectance spectroscopy) is a tool that 
has been used widely for the rapid determination of organic components. For example, NIRS 

readout for nutrient level estimation on citrus leaves, using FT-NIR spectrometer and 64 scans 

per sample, takes 1–2 min. The only pretreatments of the sample required prior to analysis are 

drying, crushing, and mixing, in the case of solid matrices. Samples can also be scanned when 

fresh, as in the work of Huang et al. [28]. All this bestows on this technique several advantages 

over other, more sophisticated spectroscopic or analytical methods. The operating principle of 

the NIRS technique requires that the energy absorbed in the near-infrared region by a sample 

causes covalent bonds of C-H, O-H, and N-H, important components of organic substances, to 
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vibrate in different forms [1]. Within the field of NIRS, two main types of fundamental vibra-

tions are considered: stretching, which involves a change in the length of a bond, and bending, 

which involves a change in the angle between two bonds. Overtones appear when a vibra-

tional mode is excited at a frequency higher than that of the fundamental vibration.

This infrared fraction comprises wavelengths between 780 and 2500 nm (12,500–4000 cm−1, 

expressed as a wavenumber, Table 1).

There is a relationship, both quantitative and qualitative, between the chemical composition 

and the spectrum recorded in the near-infrared. Hence, samples having different organic 
compositions have different infrared spectra. But, interpretation of the spectra is tremen-

dously complex, although the spectral characteristics of each compound are unique, as their 

amplitudes sometimes overlap.

Before the NIR spectrum of a sample can be used for the determination of a compound or 
specific element, a calibration for this compound or element must be developed. In an NIRS 
spectrum, the various constituents of the sample have some overlapping peaks; thus, the mea-

surements made with NIRS must be calibrated with samples of known chemical composition 

in order to extract the desired information using NIRS [2].

3. Calibration and validations of data from NIRS

Chemometrics includes all methods of multivariate calibration in the field of analytical chem-

istry. Unlike univariate calibration, where a spectral peak (height or area) is correlated with 

the reference concentration, multivariate calibration uses the entire spectrum structure with a 

large amount of spectral information to correlate with the reference concentration.

The establishment of a model for the use of NIRS data in the analysis of samples consists of 

the following steps: (1) introduction of the spectral and concentration data; (2) preprocessing 

Group Aliphatic 
hydrocarbons

Aromatic 

hydrocarbons
Carboxylic acid Amines Water

Frequency 

range (cm−1)

9100–7800 

(overtone of 

CH-stretching)

ca. 9000 (overtone  

of CH-stretching)

ca. 6900 (overtone  

of CH-stretching)

7000–6500 

(overtone of 

NH-stretching)

7500–6400 

(overtone of 

OH-stretching)

7700–6900 

(combination)

7300–6900 

(combination)

ca. 5250 (overtone  

of CO-stretching)

5200–4500 

(combination)

5400–4900 

(combination)

6300–5500 

(overtone of 

CH-stretching)

ca. 6000 (overtone  

of CH-stretching)

4900–4600 

(combination)

5000–4100 

(combination)

4700–4000 

(combination)

Table 1. Absorbance signals in the near infrared for the major chemical groups present in organic matter.
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of the spectral data; (3) definition of the appropriate frequency range; (4) validation and opti-
mization of the method; (5) definitive calibration; and (6) routine analysis.

(1) Introduction of the spectral and concentration data. This process begins with the selection 

of the group of samples for calibration, which must be well defined statistically, and pretreat-
ment of the samples to assess measurement errors. The dispersion of incident radiation, also 

known as the scatter effect, produces a low selectivity (quality of being able to tune in to one 
particular frequency while blocking out other unwanted frequencies) of the NIR spectral infor-

mation [3]. This is due to physical phenomena—such as the texture, size, and geometry of the 

particles that make up the sample [4, 5]—and to changes in the refractive index of the material 

which interacts with the radiation, causing numerous unwanted variations in the NIR spec-

tral data [6–9]. Depending on the complexity of the samples, between 20 and 200 samples are 

necessary to develop a multivariate calibration method. The greater the number of samples, 

the more representative is the calibrations achieved. The samples should have a normal distri-

bution, cover the entire range of concentrations of the parameters that are to be estimated by 

NIRS, and should not have areas where uncertainty is high and errors can be significant. For 
instance, the NIR spectrum of water (transmission measurement, optical path length: 2 mm) 

shows a total absorption between 5200 and 4000 cm−1 and below 4000 cm−1 a strong contribu-

tion of spectral noise. Finally, for each sample a classical analysis of the desired components is 

carried out, to obtain the so-called reference values, and its NIR spectrum is obtained.

(2) Preprocessing of the spectral data. The spectral pretreatment that improves the signal/noise 

ratio must be chosen. For example, the problems of baseline displacement need to be eliminated. 

The procedures for preprocessing of the NIRS spectrum, to obtain a good correlation between 

the spectral data and the concentration, include: no data preprocessing (NDP), first derivate 
(FD), application: it is used to emphasize pronounced, but small features compared to enormous 

broad-banded structures or on the evaluation of broad bands that get a steeper shape, so it can be 

evaluated more easily; second derivate (SED), application: similar to first derivative, where even 
extremely flat structures can be evaluated, but the spectral noise is enhanced as well, the most 
widely used methods here are the Savitzky-Golay [10] and Norris [11] methods; standard normal 

variate (SNV [6]; multiplicative scatter correction (MSC [3, 12]), application: it is used for mea-

surements in diffuse reflection; detrending (DT), which is usually applied in conjunction with 
SNV; spectral smoothing (SS), for which the most used are the Savitzky-Golay [10] and Fourier 

transformation [13] or vector normalization (VN), application: in a measurement in diffuse reflec-

tion, the interfering influences of different material densities or particles sizes can often be mini-
mized; maximum-minimum normalization (MMN), application: similar to vector normalization; 
subtraction of a straight line (SSL), application: a linear tilt of the baseline shift is eliminated; linear 

offset subtraction (LOS), application: linear baseline shifts are eliminated. The optimum method 
depends on the system to be analyzed. Generally, SSL, VN, or FD leads to better calibration.

(3) Definition of the appropriate frequency range. Once the calibration samples have been 
selected and then analyzed by the reference method and NIRS, a correlation between the 

spectral and analytical data is searched for [14]. For this purpose different statistical treat-
ments are used, such as multiple linear regression (MLR [15]), principal components  

regression (PCR), and partial least squares regression (PLSR) as linear methods and use of 

artificial neural networks (ANN) as a nonlinear method. PLSR is the one most commonly used 
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[16, 17]. The best correlated frequency ranges are assessed and then selected based on the coef-

ficient of determination, R2, and a corresponding low error of analysis (root mean square error 

of cross validation/root mean square error of prediction (RMSECV/RMSEP), see equations (4) and 
(5)). Typically, an R2 value of 0.75–1.0 indicates an acceptable correlation and it depends on the 

type of sample. Good values for R2 are larger than 0.90 for solids and larger than 0.99 liquid 

measurements. The total absorption of water (frequency range 5200–4000 cm−1) yields rela-

tive absorbance values (A) greater than 2.5. The use of dried samples prevents interference of 

water in the aforementioned frequency range. Spectral noise is usually found below 4000 cm−1 

and gives relative absorbance values lower than 0.7. Thus, this region should not be included 

to establish a calibration. Values of A between 0.7 and 1.0 generally give better results. Besides, 
modern FT-spectrometers allow the use of absorbance values of up to 2.5 for the calibration.

(4) Validation and optimization of the method. To choose the best calibration for the regression 

equation with linear models (PLS algorithm, for instance), the instrumental software combines 

different methods of data pretreatment and frequency ranges. Then, it provides as output the 
corresponding mean error of prediction and R2 for a given number of factors. The quality of the 

calibration is evaluated by the validation, which consists of comparing the concentrations pre-

dicted by the calibration with the reference values of samples not used in this calibration [18]. 

There are two types of validation: internal or cross validation and external validation. In internal 

validation, a sample, or group of samples, is taken from the set of samples. With the calibration 

obtained using the remaining samples, the concentrations in the previously separated samples 

are predicted. The samples are interchanged until all have been used once for the validation. In 

external validation, all samples are used for calibration and prediction is performed for addi-

tional samples [19]. Since optimal frequency windows and pretreatments of signals cannot be 

anticipated, they are generally determined empirically by trial and error. These values are cal-

culated for a growing number of factors. The concentration and spectral data are encoded in 

matrix form and reduced to a small number of factors called “rank.” To some extent, the factors 

or principal components are “information units,” as may be the case for the concentration of a 

sample component. In many cases, there are several combinations of frequency window and 

pretreatment of spectral data of comparable quality for the prediction of analytical results. In 

these cases the combination that has fewer factors is recommended, as it generally will be more 

stable (Table 2). The optimum method is number 2 (mean error of prediction 0.07% and opti-

mum rank 6). However, it is possible to manually set a lower rank in order to get a better result.

Number Data preprocessing Frequency ranges  
(cm−1)

Optimum rank Coefficient of  
determination (R2)

Mean error of 

prediction (%)

1 NDP 9000–5200 9 0.998 0.16

2 SSL 9000–5200 6 >0.999 0.07

3 VN 9000–5200 8 0.996 0.42

4 SSL 7000–5200 8 >0.999 0.07

No data preprocessing (NDP), subtraction of a straight line (SSL), and vector normalization (VN).

Table 2. Method optimization using the PLS algorithm for NIRS analysis of CH
3
OH concentration in a mixture of CH

3
OH, 

C
2
H

5
OH, and C

3
H

7
OH.
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There will be anomalous samples and spectra, called “outliers,” which affect the predictive 
ability of the NIRS equations obtained [20]. It is important not to remove them until one has 

a clear explanation; to make this decision one has to take into account the t-test (“Student's 

t-test” Eq. 1) and H (Mahalanobis distance, Eqs. 2 and 3) values, among others.

t-Test applied to each wavelength gives an idea about the weight of each wavelength in the 

calibration. The higher the value in the t-test, the more important it is. If it is higher than 10, it 

is considered essential to take part in the calibration equation.

  t =   
 Y  

pred
   −  Y  

ref
  
 _________ 

SEC *  √ 
____

 1 − H    
    (1)

SEC is the standard error of the calibration, and H is the spectral error. In NIRS, t > 2.5 are 

considered significative and kept in the calibration.

Chemical outliers can be recognized after applying a t-test since they present significative dif-
ferences between the composition value provided by the reference method and the regression 

model.

To detect spectral outliers, the Mahalanobis distance is particularly useful. For MLR models 
it is calculated as follows:

  H =   K __ n    (2)

For the models PLSR and PCR, it is expressed with the following equation:

  H =   K + 1 ____ n    (3)

n is the number of spectra in the dataset and K is the number of selected wavelengths. H < 3 

means that the samples belong to the population.

The statistics used in the evaluation, selection, and validation of the calibration equations are 

as follows:

- Determination coefficient of the calibration (R2
c
)/Determination coefficient of the cross validation 

(R2
v
). This establishes a correlation between the analytical data obtained in the laboratory 

and those predicted by the calibration equations for each of the components analyzed. As 

mentioned above, an R2 value of 0.75–1.0 indicates an acceptable correlation. Some calibra-

tions with an R2 value <0.75 may be useful for monitoring purposes. Thus, an R2 value of 0.50–

0.69 distinguishes between low, medium, and high values; an R2 of 0.30–0.049 distinguishes 

between low and high values; and with R2 < 0.29, it is better not to analyze [21, 22].

- Root mean square error of estimation (RMSEE). This is the error associated with the differences 
between the analyses performed in the laboratory using the reference methods and the results 

of the analysis by NIRS technology, for each of the parameters determined in the samples 

used in the calibration. This value of this statistical parameter should be as low as possible. It 

is calculated using the formula:

  RMSEE =  √ 

__________

    1 ______ 
M − R − 1

   SSE    (4)
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where M is the number of samples in the calibration set, R is the number of principal com-

ponents (factors), and SSE is the squared sum of the differences between the actual and esti-
mated values. It is preferable to compare this type of error with the error that can occur with 

traditional methods of analysis and decide whether the error is acceptable for routine use. The 

prediction error (P) is the accumulation of the errors of the reference concentrations (R), of the 

NIRS data, and of the calibration. The lower the ratio of the errors (P/R), the greater the accu-

racy of the NIRS model obtained: P/R = 1–1.5, excellent; P/R = 2–3, good; P/R = 4, moderate; and 

P/R = 5, poor [23].

- Root mean square error of cross validation/Root mean square error of prediction (RMSECV/RMSEP). 
Following calibration the cross validation error is obtained. This error is the one that should 

be taken into account most closely when evaluating the calibration. To calculate it, consider-

ing the number of samples in the set and the differences between the estimated values and 
those obtained by standard methods of analysis, the following formula is used:

  RMSECV =  √ 

______________

    1 __ 
M

   ·  ∑ 
i=1

  
M

    (Diffe r  
i
   )   2     (5)

- Residual prediction deviation (RPD). This is defined as the ratio between the standard devia-

tion of the reference data and the RMSEE/RMSECV. One researcher [24] provided a guide to 

evaluate calibrations performed with environmental samples, based on the R2 and the RPD, 

as follows: excellent, R2 > 0.95 and RPD > 4; good, R2 = 0.9–0.95 and RPD = 3–4; quite good, 

R2 = 0.8–0.9 and RPD = 2.25–3; quite useful, R2 = 0.7–0.8 and RPD = 1.75–2.25. RPD is of the 

same significance as R2 explained variance. The R2 also allows a qualitative evaluation of the 

error of prediction during the validation process.

- Bias. This is the difference between the mean value predicted by FT-NIRS and the mean 
value of the reference predictive model and the residual prediction deviation (RPD, [20, 25, 

26]): M is the number of samples used in the calibration, xi is the result obtained by NIRS, and 

yi is the result obtained by the reference method for sample i:

  Bias =   1 __ 
M

    ∑ 
i=1

  i=M    (xi − yi )  (6)

In the presence of laborious and troublesome datasets, it is possible to ask for high-perfor-

mance external NIR calibration services such as those provided by private companies to opti-

mize and validate the method.

(5) Definitive calibration. After all the “outliers” have been eliminated and the optimal param-

eters determined (for example, R2, RMSEE, and RPD for the calibration and R2, RMSEP, RPD, 
and bias for the validation), the final calibration model is evaluated for the analysis of new 
samples.

(6) Routine analysis. Here the optimum chemometric model is used to analyze quickly 

unknown samples. The Mahalanobis distance can alert one to samples (“outliers”) that are 
outside the calibration range or do not fit the model well.
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4. Mineral nutrients and organic compounds in different samples from 
agricultural systems

4.1. Plants

Fruit and vegetable crops, in order to achieve good vegetative growth and maximum pro-

duction with good quality fruit, require a good nutritional status, maintaining a proper 

balance of nitrogen, potassium, phosphorus, and trace elements such as manganese, 

boron, copper, and magnesium. The guide to the nutritional status of crops is based on 

the method known as “sufficiency range” (SR), which establishes—for each nutrient—the 
ranges of values considered to be normal and to represent deficiency or toxicity [27]; or 

it can be based on the establishment of indices of dependent nutrients, in which each 

index includes two or more nutrients, the so-called “Integrated System of Diagnosis and 

Recommendation (DRIS).” But, a good fertilization program also should pay attention 
to the changes that occur in the mineral status of plants in their different phenological 
stages so that the application of fertilizers can be adapted to the requirements of the plants 

at all times. To obtain this information, it is necessary to perform mineral analyses of 

leaves by ICP-OES or AA after acid digestion of the samples, as well as analysis of the 

C/N ratio, which involves the analysis of a large number of samples with all that this 

entails. Currently, the available knowledge of reflectance spectroscopy in the near-infrared 
(NIR) part of the spectrum can be used to determine the nutritional status of crops quickly 

and cheaply. The mineral composition of an organic matrix can be estimated by NIRS, 

from the spectra in the range 700–2500 nm, due to the association between the minerals 

and the organic functional groups or the organic matrix itself [28]. There are no infrared 

absorption bonds in the mineral species of macro- and micronutrients, but NIRS deter-

mines bonds within organic compounds that are negatively related to inorganic materials. 

If mineral matter is bound to organic compounds, the distortion of the spectrum is detect-
able at certain wavelengths, suggesting that NIRS can quantify inorganic materials using 

their ratio to the organic matter [29].

Numerous studies show that the NIRS technique, together with multivariate analysis and 

partial least squares regression (PLSR), provides a powerful tool for the interpretation 

and analysis of spectra. For example, NIRS technology has been used successfully to pre-

dict the nutritional status of leaves of apple [30], alfalfa [31], sugar cane [32], root crops 

[33], yerba mate [34], and citrus [35, 36]. It has been observed in citrus leaves of different 
varieties including lemon, mandarin, orange, and grapefruit—high accuracy regarding the 

estimation of N (R = 0.99) and Ca (R = 0.98) as well as acceptable estimates for K, Mg, Fe, 
and Zn [37]. However, good calibrations for the estimation of P, B, Cu, and Mn were not 
obtained. Furthermore, the concentrations of nutrients could be estimated with a single 

calibration model, regardless of the variety of citrus analyzed. In yerba mate plants, the 

prediction was good for P and Cu but not for K, Ca, Na, Mn, or Zn [34]. These data show 

that the NIR spectral response depends on the species studied, so for each species it is 

necessary to make the appropriate calibrations—but these are valid for different cultivars 
of the same species.
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4.2. Soils

Soil is a natural resource that is vital in agriculture for the production of food, fiber, and 
energy; but it serves also as a platform for human activities, constitutes an element of the 

landscape, is an archive of cultural heritage, and plays a central role as a habitat and gene 

pool. It stores, filters, and transforms many substances, including water, nutrients, and carbon 
(C). In fact, it is the largest C “store” in the world (1500 gigatonnes). All these functions must 

be protected because of their socioeconomic and environmental importance.

Fundamentally, the soil is a complex matrix of organic matter, minerals, water, air, and 
microorganisms. The soil organic matter is only a small part, but it plays a big role in both 
the physical and chemical properties of soil as well as in the development of crops. This soil 

fraction comprises humus (material that is decomposed, dark, and colloidal in nature) and 

materials such as the roots and aerial parts of plants and the bodies of insects and other ani-

mals that are deposited on the ground. The content of organic matter normally found in the 
soil is small, only about 1–5% by weight, of which 85–90% is humus and only a small part 

is the nonhumified remains. The mineral phase is a mixture of materials that differ in their 
composition and properties. Typically, this fraction is characterized by particle size. Stones, 

gravel, and sand represent the coarse fraction, while smaller particles like silt and clay con-

stitute the fine fraction of the soil. The clays also can be classified according to the negative 
charges on their surfaces—some minerals are more negative than others—and this property 

also influences the chemical characteristics of the soil. There is a parameter that is very use-

ful for measuring these chemical properties, namely, the cation exchange capacity (CEC)—

defined as the maximum amount of cations that a soil can fix. Water is another significant 
fraction of the soil, and its content depends on the amount and size of the pores in the soil. In 

plants, water is the major constituent of protoplasm (85–95%) and is essential for physiologi-

cal processes such as photosynthesis, nutrient transport, and maintenance of turgor. The air 

is another important fraction of the soil. Its oxygen is essential for the respiration of roots 

and microorganisms. When aeration is poor, organic matter is oxidized slowly, the activity 
of aerobic microorganisms is paralyzed, and only anaerobes are active, giving rise to reduced 

forms of elements that are usually toxic to plants. The most common microorganisms in soils 

are nematodes, protozoa, and rotifers—whose activities also determine the physiochemical 

soil characteristics, as they have the ability to degrade highly resistant organic compounds 

such as cellulose and lignin, and can even degrade minerals, thus releasing plant nutrients.

The study of soil should take into account the different phases of the soil and must be directed 
toward two main objectives: (i) consideration of its various properties, with special empha-

sis on plant productivity (that is, practical or applied aspects); and (ii) scientific, especially 
chemical, study—to determine the variation of productivity and find ways for soil conserva-

tion and improvement. In recent years, it has been observed that NIRS (using visible-near 

infrared) can be very useful for characterization of soils. This technique has many advantages: 

sample preparation is easy as it only requires the drying and grinding of the soil, reagents 

nontoxic to the environment are used, measurements are made in a few seconds, a single scan 

can show multiple properties, and the technique can be used both in the laboratory and in 

situ. The parameters that can be measured in the soil using NIRS are described below.
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4.2.1. Soil organic matter (SOM)

In the laboratory, it is difficult to separate the organic and inorganic material of a soil, 
so an estimate of the content of organic matter is obtained indirectly through the analysis 
of an element that is a constituent of all organic substances, namely C. Once the amount 

of organic C present in a soil sample is known, the percentage of organic matter with 
respect to the total weight of the soil can be estimated indirectly. Classically, it has been 

determined by various methods—such as calcination of the soil sample, oxidation with 

potassium dichromate, or oxidation with hydrogen peroxide. With regard to NIRS, a large 

number of studies have shown that this analytical technique is very useful for estimat-

ing SOM. For this, absorption bands in the NIR region which result from the stretching 
and bending of NH, CO, and CH groups, that form part of the organic material, are used 

[38].

The 1990s saw the identification of the absorption bands of wavelength (nm) 1100, 1600, 
1700–1800, 2000, and 2200–2400 as the most useful for measuring organic C. Since 2000, 

the technique of NIRS has been perfected and adapted to the soil and climatic conditions 

of each area. Thus, in Australian soil, it has been also observed that if the absorption spec-

trum was made in the vis-NIR region—that is, including the visible region—better results 
were obtained than with NIR alone [39]. Another problem that researchers have faced in 

achieving good calibrations has been that the spectral response can change depending on 

the mineral fraction of the soil, composition of organic matter, texture, and soil moisture con-

tent [40–42]. All these problems have been solved by optimizing the way of taking samples 

(local and regional scales) [43, 44], choosing the most appropriate mathematical models for 

the calibration [45–48], establishing covariance models, or eliminating certain factors that 

make the model weak [49, 50]. For example, in saline soils of El-Tina Plain (Egypt), it has 

been compared several regression techniques to estimate the organic matter content of soils 
[51]. Specifically, they used PLSR, support vector regression (SVR), and multivariate adap-

tive regression splines (MARS) and found that the best calibration was obtained with MARS 
with continuum removed reflectance preprocessing (R2 and RMSE were 0.89 and 0.19, respec-

tively). The calibration model to estimate the organic matter in an area of the Grand-Duchy of 
Luxembourg have been improved, taking into account the amount of water in the soil [52]; it 

was also considered by NIRS, using the reflectance values at 1800 and 2119 nm and calculat-
ing the normalized soil moisture index (NMSI).

4.2.2. Soil mineralogy

The mineral fraction of the soil occupies almost half of the soil volume. Its composition and 

concentration as well as the proportion of different minerals determine important properties 
such as texture, structure, and CEC. These properties also determine other soil characteristics 

such as the availability of nutrients to agricultural crops. Classical methods for the determina-

tion of clay minerals are qualitative and are based on XRD (XTR). However, some researchers 

[53, 54] made the first tests to see if NIRS could be used to estimate soil minerals; later, these 
same authors [55] compared the NIRS results with XRD analysis, concluding that NIRS is 
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an effective method to determine the mineralogy of the soil. This is because soil minerals 
absorb light in the UV, visible, vis-NIR, and mid-NIR parts of the electromagnetic spectrum. 

For example, Fe oxides absorb UV radiation while phyllosilicates (clay minerals) have varied 

spectra in the vis-NIR. Overall, this technique has been used to estimate the Fe oxides goe-

thite (α-FeOOH) and hematite (α-Fe2O3), clays of the kaolinite, illite, and smectite types, and 
carbonates [56, 57].

4.2.3. Soil texture and CEC

The water dynamics and aeration of a soil depend on its structure and texture, and these 

parameters are important for the development of both plants and microorganisms, so they 

need to be evaluated. These parameters also determine the leaching of fertilizers and pes-

ticides in agricultural soils. Generally, soil texture is defined as the ratio (in percentage by 
weight) of particles smaller than 2 mm in diameter and classified as sand (2–0.02 µm), silt 
(0.02–0.002 µm), or clay (0.002 µm). Ben-Dor and Banin [58] found that the clay content may 

be estimated by analyzing the absorption bands of O-H in water, and those of Mg-, Al-, and 
Fe-OH in the mineral fraction of the soil. Curcio [59] used visible and near-infrared (VNIR, 

400–1200 nm) and shortwave infrared (SWIR, 1200–2500 nm) reflectance domains to estimate 
soil texture in three agricultural areas of Italy (Bompensiere, Dirillo, and Pietranera), and 
obtained a good calibration by using the PLSR method, the accuracy being good for the clay 

fraction (RMSE = 5.8%, R2=0.87) and satisfactory for sand (RMSE = 7.7%, R2=0.80) and silt 

(RMSE = 7.2%, R2=0.60).

The CEC is traditionally measured by the method of Chapman [60], based on saturating the 

soil with sodium. However, the vis-NIR technique can also estimate this parameter in soils 

accurately, if methods of multivariate regression are used instead of simple bivariate relation-

ships, and it is suitable for measurements of peak intensities in the mid-IR range. Recently, 

Ulusoy et al. [61] obtained a good prediction of CEC using an analysis of PLSR, both in the 

laboratory and for online measurements in the field—although the calibration was much bet-
ter for the data obtained in the laboratory.

4.2.4. Plant nutrients

Due to the importance of the mineral nutrition of plants in the yield and quality of fruit and 

vegetables, one of the most common practices in agriculture is the analysis of the soil con-

tent of N, P, K, Fe, Ca, and Mg. This information is particularly important when optimizing 
fertilization programs. In most farming systems N is the element most commonly applied, 

followed by K, P, Ca, and micronutrients. These nutrients do not have a specific absorption 
spectrum in the vis-NIR region. Generally, the correlations between the “real” concentrations 
of these nutrients and those estimated by NIR are highly variable, the variability coefficients 
(R2) being in the following range: N (0.11–0.55), available potassium (0.56–0.83), exchange-

able potassium (0.11–0.55), Ca (0.75–0.89), Fe (0.64–0.91), Na (0.09–0.44), Mg (0.53–0.82), and 
P (0.23–0.92) [40]. This variability may depend on many factors, so local-scale calibrations are 

recommended to achieve greater accuracy.
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4.2.5. pH

Soil pH is an important regulator of fertilization. The solubility of the nutrients is pH-

dependent, and plants may decrease nutrient uptake if the soil pH is not suitable. Other 

pH-dependent factors include the biological activity, decomposition of organic matter, and 
mineralization. Generally, the ideal soil pH for plants is between 5.5 and 6.5. Soil pH, or more 
specifically the H+ ions, has no direct response to NIR but its value can be estimated well 

with this technique if the appropriate covariations are applied to components that do exhibit 

activity in the NIR, such as organic matter and clays [62]. In different experiments it has been 
found that pH calibration gives R2 values between 0.55 and 0.77 and an RMSE of 0.3–0.5 pH 
units. These parameters could be further improved if specific calibrations were made at the 
local scale, while studying in detail which covariance parameters have a direct influence on 
the NIR and thus should be used.

4.2.6. Heavy metals and other soil contaminants

Heavy metals are potential pollutants of air, water, and soil and of plants when taken up 

in sufficiently high amounts; this pollution will also affect other links in the food chain. In 
most agricultural soils, there are small amounts of As, B, Cd, Co, Cr, Cu, Mo, Mn, Ni, Se, and 
Zn, but when normal values are exceeded this can cause soil pollution and phytotoxicity, 

negatively impacting the agronomic performance. Usually, heavy metals are measured by 

atomic absorption or ICP. In the vis-NIR region these metals do not absorb energy, but their 

concentrations can be estimated if used as covariates with other components that do possess 

absorption spectra [40]. For example, they can be related to the organic matter, hydroxides, 
sulfides, carbonates, oxides, clay minerals, or soil texture (Stenberg et al. [40]). Todorova et al. 

[63] investigated the use of NIRS to estimate the concentration of heavy metals (Zn, Cu, Pb, 

Cr, and Ni) in various soils of Stara (Zagora Region, Bulgaria), using the PLS type of calibra-

tion. The best validation of the method was observed with Cu, while it allowed estimation of 

whether the concentrations of Zn, Pb, and Ni were low or high; however, Cr gave the weakest 

validation. These authors also noted that as the number of samples in the validation process 

increased, the RMESP values decreased.

In soils, hydrocarbons can also be measured with the vis-NIR technique, to establish the 

degree of contamination of soils that have suffered spills of petroleum products. Okparanma 
[64] used this technique to make soil maps in which the concentration of polycyclic aromatic 

hydrocarbons and their equivalent toxic concentrations in soil from Niger (Nigeria) were 

indicated. The data of this study revealed that the elaboration of soil spectra between 300 

and 2500 nm, together with a PLS calibration, permitted the estimation of the concentration 
of hydrocarbons without significant differences from the results obtained by the conventional 
method of gas chromatography-mass spectrometry.

4.2.7. Soil moisture

There are a multitude of reasons to measure the water content in agricultural soils because 

water is fundamental to the development of plants and for soil biology, besides regulating 
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important processes in the soil such as nitrification/denitrification, leaching, and erosion. 
In the laboratory, although there are many methods of measurement, the traditional one is 

based on weighing the sample fresh and then after drying, calculating the percentage of water 

relative to the dry weight of soil. Water produces an absorption spectrum in the NIR due 

to expansions and stresses of O-H bonds. Water incorporated into the soil in clay minerals 

absorbs at wavelengths around 1400 and 1900 nm. The main problem researchers have had in 

the calibration of this parameter is due to the fact that the water found on the surface of the 

minerals in thin layers and in the pores tends to decrease the albedo (the percentage of radia-

tion that the soil reflects), changing the refractive index. As the porosity and refractive index 
of soil particles vary between soil types, a relationship between the albedo and water content 

cannot be given. However, some authors have successfully used a multivariate calibration 

with data from the NIR spectral bands to estimate the water content. For example, Bullock et 
al. [65] found a good correlation using a PLSR of the regions of 1100–2500 nm, and Ben-Dor 
and Banin [58] produced a good regression for samples having a water content of 0.2–11.6% 

using an MLR (multiple linear regression) calibration. The problem with all these calibrations 
appears when one wants to have a single calibration for soils of very different geological ori-
gins; thus, calibrations at the local scale are recommended [62, 66].

4.3. Fruits

Fruits and vegetables from agricultural plantations must maintain their optimum quality, 

whether they are destined for fresh consumption or for processing. As quality rises so do 

prices, so it is necessary to determine the intrinsic characteristics and external appearance of 

the fruits and vegetables. This information can be used to exclude fruits of poor quality, and 

can be provided to the consumer/industry to inform them of the added value of the product 

that is being offered. External defects—such as bruises, injuries from cold and wind, cracks 
in the skin, and contamination by pathogens—cause significant economic losses. Parameters 
such as total soluble solids content (TSS), acidity, and water content, which are related to the 

flavor and aroma of fruit and vegetables, serve to define their organoleptic quality. Therefore, 
currently, analytical methods are being developed that allow accurate, fast, and noninvasive 

determination of the qualities of agricultural products. In the case of the appearance of the 

fruits, computer vision technology—which integrates data acquisition, processing, and analy-

sis—has great potential for the automatic inspection of the appearance of the products. The 

internal quality of the fruits can be estimated accurately by spectroscopy in the visible and 

infrared (vis-NIR), because most of the organoleptic characteristics are related to functional 

groups of the type C-H, N-H, and O-H. What follows is a brief summary of the most signifi-

cant parameters that can be measured with these spectrometric techniques.

4.3.1. Total soluble solids

This parameter is used to measure the approximate amount of sugars in fruit juices, wine, or 

liquids processed in the agri-food industry, and is used to track in situ the evolution of ripening 

of the fruits and their optimal harvest time. The determination is made by refractometry and 

expressed in Brix, equivalent to grams of sugar per 100 ml of juice. Using the vis-NIR technique 
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with a calibration model based on PLS, many researchers have obtained high correlation coeffi-

cients (R) (0.80–0.95) for fruits of mango, strawberry, apple, table grape, banana, blueberry, and 

bell pepper [67]. Recently, it has been shown that this technique can measure online the TSS of 

pear fruits (five fruits per second) as they pass along a transport chain [68]. The authors noted 

that the relationship between the wavelengths of 681 and 822 nm and a PLS calibration model 

allowed estimation of both the TSS and the healthy pears that had no apparent surface damage; 

therefore, they suggested that this technique could be integrated into industrial processes to 

select good quality fruit quickly, thereby reducing the labor required for both processing and 

laboratory analysis. Also, with portable vis-NIR equipment, the state of maturation of the grape 

variety Sangiovese could be determined in situ, by calculating the index of absorbance differ-

ence (IAD) from the values at wavelengths of 560 and 640 nm. These values correlate with TSS as 

well as with parameters such as titratable acidity (TA), firmness (DI), and anthocyanins—which 
allows one to know quickly and accurately the date on which the fruit should be harvested [69].

4.3.2. Total titratable acidity

This parameter describes the total concentration of acids in food, vegetables, or fruit. It is deter-

mined by an acid-base titration (soluble acids determined as citric, malic, lactic, oxaloacetic, 

succinic, glyceric, phosphoric, hydrochloric, fumaric, galacturonic, glyceric, tartaric acids, etc.). 

Acidity influences the taste of food (roughness), the color, the microbial stability, and the quality 
of conservation, and is determined by an acid-base titration using 0.1 N NaOH as the base and 

phenolphthalein as the indicator. Estimations by NIRS of this parameter and the pH of the fruit 

are as good as those found for the TSS. Thus, with the corresponding calibration data obtained 

by NIR, values of R between 0.80 and 0.82 have been observed in Chinese bayberry, apple, straw-

berry, table grape, and grape using wavelengths between 320 and 1650 nm [67]. In Spain, acidity 

has been studied using online NIRS combined with chemometric techniques (PCA, LDA, and 

PLSR) in fruits of different olive varieties; this gave good estimates of the free acidity (R2 = 0.83), 

water content (R2 = 0.76), and fatty acid content (R2 = 0.83). For the calibration, a reflectance spec-

trum of intact olive fruits in the wavelength range 1000–2300 nm was produced and then samples 

of a paste prepared from these fruits were analyzed in the traditional manner. The estimation of 

these parameters improved when the calibration was performed for each stage of ripeness [70].

4.3.3. Contents of water and dry matter

For the food industry, the moisture content is an important quality factor of fruit and vegeta-

bles, whether fresh or processed, and influences their conservation and deterioration. The dry 
matter content is obviously very important when calculating the contents of other constitu-

ents of fruit and vegetables on the basis of the dry matter, which is uniform and less variable 
than the fresh weight. Water is the major component of all fruit and vegetables, representing 

between 60 and 96% by weight. The methods used most commonly for its determination are 

drying methods; the percentage water content is calculated as the loss in weight due to elimi-

nation by heating under standard conditions. Pu et al. [67] stressed that the vis-NIR technique 

is useful for measuring the water content in fruits of mango, strawberry, mushroom, banana, 

and soybean using spectra in the range of 400–1000 nm.

Developments in Near-Infrared Spectroscopy110



4.4. Grains and seeds of cereals, grasses species, and legumes

Cereals are important in animal feed not only because they provide energy but also since 

they contribute 70% of the protein in the diet and are especially important for pig nutrition. 

Similarly, soya is a major source of vegetable protein in animal feed formulations. It is impor-

tant that the animal diets have a proper balance regarding the contents of amino acids.

The main nutritional parameters in the grains and seeds of these crop plants determined by the 

NIRS technique with regard to animal feed are the moisture and protein contents, representing 

the biological value. Other parameters analyzed are the contents of lipids, carbohydrates, and ash.

4.4.1. Amino acids

In 1978, Rubenthaler and Bruinsma [71] developed the first calibration equations for the 
determination of lysine in wheat and barley. Subsequently, Fontaine et al. [72] determined 

the total contents of methionine (Met), cysteine (Cys), lysine (Lys), threonine (Thr), trypto-

phan (Trp), and other essential amino acids in a population of cereal and sorghum samples. 

The spectra were first treated with SNV (recommended for samples with <15% moisture) 
and trend to reduce differences in the spectra that are caused by particle size effects only and 
not by changes in the constituents. In this way, the validation of the calibration equations 

showed that 70–98% of the variance of the amino acids in the samples could be explained 

using the NIRS technique, especially for Lys and Met—the amino acids most limiting to ani-
mal nutrition. Also, Kovalenko et al. [73], in the analysis of soybean samples, applied the MSC 
mathematical treatment (let to remove background spectroscopy) to the spectral data together 

with the PLSR regression model and obtained a determination coefficient (r2) of 0.91 for Lys. 

However, the concentrations of Cys and Trp did not exhibit a good correlation with the spec-

tral information, the r2 value for Trp being 0.04.

4.4.2. Other organic matter

With respect to dry matter, lipids, total protein, carbohydrate, and ash, Ferreira et al. [74] 

and Wang et al. [75] established models to determine the protein and lipid contents in both 

soya and fava beans. These authors obtained high R2 values for protein (0.81 vs. 0.94); how-

ever, for lipids the values were slightly lower (0.71 vs. 0.66). Both groups used as a math-

ematical treatments: standard normal variate transformation (SNV; let to correct scattering 
effects caused by physical differences between samples) and first derivate. For the rest of 
the components, Ferreira et al. [74] obtained calibrations giving high predictability for dry 

matter, ash, and carbohydrates (RMSEP of 0.38–3.71%), the prediction being poorest for 
carbohydrates (R2

c
 = 0.50 and RPD

c
 = 0.83). Wang et al. [75] found RPD values of 2.95 and 

2.50 for starch and total polyphenol content, respectively.

4.4.3. Toxic substances

Some seeds may contain substances that are antinutritional or toxic in nature, such as 

L-canavanine in seeds of one-flowered vetch. This is a toxic nonprotein amino acid that can 
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cause a reduction in food intake, particularly in nonruminant animals [76]. These authors deter-

mined the content of L-canavanine in one-flowered vetch seeds by NIRS: the calibration equa-

tion obtained showed a correlation (r2) of 0.72, which, according to these authors, only served 

to separate the samples into groups of low, medium, and high L-canavanine content. However, 

the equation obtained for the total protein was able to predict with an accuracy similar to 

that of the reference method, showing a correlation (r2) of 0.95. Berardo et al. [77] studied the 

rapid detection of mycotoxins, mainly produced by the fungus Fusarium verticillioides, in maize 

samples. The best predictive ability for the overall rate of infection and F. verticillioides was 

obtained using MPLSR in samples consisting of grains of maize (r2 = 0.75 and SECV = 7.43) and 

in samples of maize flour (r2 = 0.79 and SECV = 10.95). These authors before the development 

of the calibration equations applied MSC (multiplicative scatter correction) to remove additive 
multiplicative effects in spectroscopic data to prevent them from dominating the information 
signal in the data.

4.5. Forage and silage

The production systems of ruminants are based on forage resources. These forages and—

more particularly—maize, wheat, and alfalfa can be conserved as silage. Therefore, quick 

and reliable knowledge of the quality of forage and silage is very important for technicians 

and producers. The quality of silage depends—on the one hand—on its nutritional value, 

which is directly linked to its chemical composition (fiber fractions, nitrogenous materi-
als, minerals, carbohydrates), and—on the other hand—on the quality of its conservation, 

which is defined by the end-products (lactic, acetic, and butyric acids, ammoniacal nitro-

gen, soluble nitrogen, etc.) of the fermentation processes. Currently, the main constituents 

determined by the NIRS technique in forage and silage, and which are important in the 

feeding of ruminants, are the total protein and protein fractions, soluble and structural car-

bohydrates, and digestibility of the forage, the latter depending on the content of structural 
carbohydrates.

Thus, Volkers et al. [78] established calibration equations for samples from different parts of 
a forage maize crop to predict the crude protein content, obtaining coefficients of determina-

tion (R2) of 0.86–0.96, except for samples of the cobs—which had an R2 of 0.56. For net energy, 

the prediction was good—with an R2 of 0.93 and 0.84 for the entire plant without the cobs and 

stalks, respectively.

With respect to the nitrogenous fractions, the nonprotein nitrogen/total nitrogen (NPN/TN) 

ratio in silage is very important for animal nutrition, since it indicates whether the silage 

has overheated; if the value is greater than 12%, it is considered to have occurred [79]. The 

acid detergent insoluble nitrogen (ADIN) is the fraction of the total nitrogen that is bound 

to the cell wall lignin of the plant. This component has low bioavailability but indicates the 

quality of the silage, as its abundance increases with overheating. Normally, it is not rou-

tinely analyzed due to the slowness of the official methods. Consequently, Hermida et al. [79] 

developed calibration equations by MPLS using first and second derivatives with smoothing 
average, which led to the removal of spectral noise that makes it difficult to extract relevant 
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information, for determining the TN, soluble nitrogen (SN), NPN, and ADIN in different 
samples of grass silage. The R2 values obtained in samples belonging to the validation set 

were 0.94, 0.92, 0.90, and 0.48 for TN, SN, NPN, and ADIN, respectively. The latter value 
indicates that NIRS is an acceptable method for the semiquantitative determination of the 

ADIN fraction.

Nie et al. [80] established calibration equations to predict the total crude protein (CP), true 

protein (TCP), neutral detergent insoluble protein (NDFCP), and acid detergent insolu-

ble protein (ADFCP) contents in samples of alfalfa. For CP the statistical parameters were  

R2
p
 = 0.96 and RPD

p
 = 5.07; for TCP they were R2

p
 = 0.91 and RPD

p
 = 3.31. However, for NDFCP 

(R2
p
 = 0.75, RPD

p
 = 1.98) and ADFCP (R2

p
 = 0.83, RPD

p
 = 2.42), the prediction was less precise. 

With these results, the NIRS technique was able to simplify the long and tedious process that 

determination in the laboratory entails, and predict quickly and empirically the degradability 

of the alfalfa protein in the rumen; also, these results could be extrapolated to proteins from 

other forage.

With respect to carbohydrates, Nousiainen et al. [81] established calibration equations to pre-

dict neutral detergent fiber (NDF), indigestible neutral detergent fiber (INDF), and digest-
ible neutral detergent fiber (DNDF). For the development of the equations the authors used 
the MPLSR model and the mathematical treatments: standard normal variate transformation, 
detrending (SNV-D), and first-order derivatization. The SNV transformation removed scat-
ter effects from spectral data, and corrected scattering effects caused by physical differences 
between samples. In these parameters, a scatter correction with the standard normal variate 
transformation combined with detrend eliminated background spectroscopy. The statistics 

obtained in the cross validation were R2
cv

 ranging from 0.82 to 0.91 and an RPD
cv

 between 

2.39 and 3.33. These authors concluded that the NIRS technique has great potential to predict 

INDF in grass silage.

Cozzolino et al. [82] developed equations to predict the organic matter, dry matter (DM), acid 
detergent fiber (ADF), NDF, CP, pH, and in vitro organic matter digestibility (DOM) in sam-

ples of ensiled whole plants of maize, using second derivative with SNV-D and MSC, which 
eliminated background spectroscopy. The best statistics obtained in the cross validation were 

for DM, CP, and ADF, with R2 values of 0.85, 0.91, and 0.86, respectively. However, for DOM, 
NDF, and pH the R2 values showed poor predictive ability, being 0.53, 0.60, and 0.51, respec-

tively. A study by Fassio et al. [83] of samples of ensiled maize kernels found similar values 

of R2 for DM, CP, and ADF; however, the R2 values for DMO and pH were higher (0.84 and 
0.90, respectively). These authors also obtained an R2 of 0.90 for the prediction of the content 

of ammonia nitrogen (NH
3
-N). In this work, the use of the jack-knifing method improved 

the calibration models obtained. It is used to evaluate the stability of the calibrations and to 

eliminate nonsignificant wavebands in the calibration.

For biological parameters such as the in vitro digestibility (IVD) and metabolizable energy 

(ME) in pastures, Lobos et al. [84] established prediction equations with RMSEP values of 
3.06 and 0.06 and R2

p
 values of 0.90 and 0.94, respectively. The reliability of prediction of these 

NIRS parameters may be affected by the particle size, the effect of drying the sample prior to 
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analysis, and the residual moisture in the samples after drying. Lovett et al. [85] studied such 

effects for samples of maize silage, with regard to the prediction of these parameters, conclud-

ing that the particle size was the most important factor, followed by the drying process and 

finally the presence of residual moisture. These authors used three statistical treatments—
PLS, MPLS, and PCR—with two standard data preprocessing methods: standard normal vari-
ate (SNV) followed by detrending and first derivative. These authors used three statistical 
treatments—PLS, MPLS, and PCR—with two standard data preprocessing methods: stan-

dard normal variate (SNV) followed by detrending and first derivative.

Other authors have developed equations using NIRS to determine quality parameters that 

indicate whether the silage fermentation has been correct, and for quantification of fatty acids 
in forages. Thus, Sorensen et al. [86] developed prediction models (using PLS on full scan 

mean spectra after scatter correction with the standard normal variate (SNV) transformation 
combined with detrend and applying a second derivative) for the determination of lactic acid 

(Lac), acetic acid (HAc), pH, and NH3-N in maize silage. The RMSECV values were 4.7, 1.9, 
2.4, and 2.9, respectively, and 4.0 for ethanol (EtOH). These authors showed that the NIRS 

technique is less accurate for HAc, but provides an estimate of its concentration. With regard 

to the quantification of fatty acids in fodders, Foster et al. [87] obtained high coefficients of 
determination for calibration (0.93–0.99) and cross-validation (0.89–0.98). The SEC and SECV 

were 20% lower compared to the mean. The RPD
CV

 was greater than 3 for all fatty acids except 
C12:0 (2.6) and C14:0 (2.9). The reliability of the prediction was lower, but acceptable for C12:0, 

C14:0, C18:0, C16:1, and C18:1. In this study, two limits were used for the validation of the 

prediction equations: GH (global spectral distance) and NH (neighborhood spectral distance) 
to determine if significant bias occurs and if there is a significant increase in unexplained error.

Finally, undesirable substances of a toxic nature can be found in animal forages. Fox et al. [88] 

established calibration equations for the estimation of hydrogen cyanide in forage sorghum. 

The equations developed by MLR gave a coefficient of determination (R2) of 0.847 and an SEC 

value of 0.050%, with R2 and SEP values for the validation of 0.829 and 0.057%, respectively. 

These authors found two important wavelengths for the prediction: 2034 and 2458 nm, associ-

ated with the former C=O carbonyl stretch and the latter associated with C-N-C stretching.

4.6. Organic residues and compost

The addition of value to wastes that are organic in nature is required to help reduce the 

increasing pollution, to optimize the use of available resources, and to offset the increasing 
energetic and economic costs of synthetic fertilizers. For this it is essential to know in detail 

the nature and type of such wastes, which can be used both fresh and stabilized. In this section 

we focus on fresh organic waste and stabilized materials—compost—resulting from the com-

posting process. The origin of these organic wastes can be varied, but generally they originate 

from urban solid waste, sewage sludge generated in waste water treatment plants, and the 

agro-industrial sector.

The agri-food industry is one of the most important sectors in Europe and therefore the wastes 

it generates pose a serious environmental problem. Most of these organic wastes are considered 
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biodegradable and derive from plants and animals. They include fruit and vegetable remains and 

crop pruning waste. Since these materials are organic or have a high organic matter content, usu-

ally with significant amounts of macronutrients as well, it is convenient to use them as organo-
mineral fertilizers. This represents a double energy saving: first, waste is eliminated and, second, 
the need for synthetic fertilizers, whose cost has increased in recent years, is diminished [88].

In the treatment of organic wastes their possible uses must be taken into account, as the treat-

ment determines the characteristics of the final product obtained. The fate of these organic 
wastes has been and is still very varied, depending on geographical location, activities taking 

place in a region, the population, facilities for reuse, and current regulations governing their 

handling and use. They can be used as soil conditioners, allowing long-term improvement of 

the physical properties of soils, reducing erosion, and helping the recovery of unproductive 

marginal areas. Another possibility is their use as substrates for the production of ornamen-

tal and horticultural plants. This requires improvement of the physical characteristics of the 

sludge or residue in question, which is achieved by composting [89].

Fresh organic wastes can be recycled by composting, a controlled bio-oxidative process 

involving numerous and varied microorganisms and requiring adequate moisture and 

heterogeneous organic substrates in the solid state. It involves a thermophilic stage and a 

temporary production of phytotoxins, giving—as the end-products of the degradation pro-

cesses—carbon dioxide, water, minerals, and stabilized organic matter, free of phytotoxins 
and ready for use in agriculture without the risk of adverse phenomena. Finally, the compost, 

that can be defined as the product resulting from the composting process and maturation and 
that consists of stabilized organic matter like humus, is obtained. It has little resemblance to 
the original organic material as it will have been degraded, resulting in finer and dark par-

ticles. It is a product that is safe and free of phytotoxic substances, whose application to the 

soil will not cause damage to plants and which can be stored without further treatment or 

alterations [90, 91].

Thus, NIRS is used to predict different parameters and/or mineral elements in different organic 
residues and compost. The NIRS calibration results used successfully by different authors work-

ing with different types of organic matrices (industrial compost, compost of various animal 
manures, compost based on sludge and vegetable waste, compost based on winery and agro-

industrial waste, compost derived from tofu waste and sewage sludge) show the great interest 

and the extent of use of this technique in the study of different variables in this type of organic 
material. In this regard there are several studies of compost or organic waste which highlight 

that the information generated with NIRS can increase the effectiveness of composting as a 
management method, due to the advantages that this technique presents as we have already 

discussed throughout this chapter. Thus, NIRs has been used to determine the next parameters.

4.6.1. Contents of mineral nutrients in compost

Mineral analysis of the materials at the start, during, and at the end in the composting pro-

cess is desirable to ensure that the input materials are within acceptable ranges. To deter-

mine the mineral nutrient content it is necessary to make a mineral analysis of the compost 
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material by ICP-OES and AA. In addition, nitrogen is one of the most important nutrients 

in the compost. When we analyze its total content, we refer to the sum of inorganic forms 

(ammonium, nitrate, and nitrite; NH
4

+, NO
3

-, NO
2

-, respectively) and organic (amino acids, 

proteins, nucleic acids, and other organic compounds having nitrogen in their structure). 

The usual methods for its analysis have been the Kjeldahl method (wet digestion) and the 

Dumas method (dry digestion). Although these conventional methods have been optimized, 

the digestion of the sample is still carried out with sulfuric acid and a series of catalysts 

which causes problems such as the emission of acid gases into the environment. Currently, 

near-infrared reflectance spectrometry technique (NIR) is available today and can be used 
to determine mineral nutrient content in organic residues and compost [91, 92]. Malley et 
al. [91] used a field-portable Corona 45 VIS NIR (visible/near-infrared) spectrometer (Carl 
Zeiss, Germany) from 360 to 1690 nm to measure total N, ammonium-N, organic N, P, K, 
Ca, Mg, S, Mn, Zn, and Cu in manure coming from beef cattle manure, stockpiled manure, 
and compost. The calibrations were developed for each constituent separately by using PCA/

PLS1 in The Unscrambler. The calibrations were successfully developed for all parameter 

measurements (except available P, nitrate + nitrite, or Na). Therefore, field-portable NIRS 
offers a considerable advance over existing field and laboratory methods by providing rapid, 
comprehensive compositional analysis when and where the information is required to assist 

with management of the nutrients of cattle manure.

Usually, heavy metals are also measured in the composts as they can cause toxicities in the 

plants (Cu, Hg, Cd, Ni). In several publications, it has been observed that NIR technique can 

be successful to measure these metals in compost coming from raw material rich in these 

metals [88, 93]. An interesting study was carried out by Shen et al. [94], who investigated 

the use of NIR to detect copper (Cu) in animal manure. A total of 118 pig manure samples 

were collected from four provinces in China, and spectra were acquired in the range of 

10,000–4000 cm-1. Results showed that the prediction of Cu concentration in pig manure 

was feasible (r2 = 0.84, RMSE = 198 mg/kg; SE/SD = 2.4). Although the heavy metals in the 
vis-NIR region do not absorb energy, Cu in pig manure can be detected by NIR spectros-

copy because a high percentage of the Cu is complexed with CONH
2
 or CONHR functional 

groups of organic ligands such as protein, urea, amino acids, and other amide compounds.

4.6.2. Organic matter and total organic carbon

Compost maturity has often been associated with the degree of compost humification. 
Compost stability refers to the degree to which composts have been decomposed to more 

stable organic materials. Various global parameters have been currently used to assess both 

maturation process and quality of the final product, including physicochemical properties, 
such as C:N ratio, humified organic and water-soluble carbon, and cation exchange capac-

ity. Methods for measuring total C in soils, such as wet combustion or dry combustion, are 
generally very accurate, but too slow or costly for everyday analysis. It has been measured 

by NIR the contents of carbon and nitrogen in sewage sludge and green waste compost [95], 

and sewage sludge [96] with successful results. So, Albrecht et al. [95] analyzed changes in 

composts of sewage sludges and green wastes by NIRS technique of six stages of compost-

ing: 8, 20, 35, 75, 135, and 180 days. Maturity of compost was assessed through changes in 

Developments in Near-Infrared Spectroscopy116



C:N ratio. Results of spectroscopic properties (200 wavelengths) were studied with several 

multivariate analyses showing a precise calibration models between spectral data, the C, N, 

C:N values, and composting time were build using partial least square regression (r2 > 0.95). 

Together, these results show the efficiency of NIRS to predict chemical changes and the stage 
of transformation of organic matter during the composting process.

Humic acids from sewage sludge. Humic acids are part of the stable organic matter fraction 
in soils and composts. Due to their favorable properties for soils and plants, and their role 

in carbon sequestration, they are considered a quality criterion of composts. The traditional 

methodology for determining the content of humic acids is based on the solubility of the 

humic substances in aqueous media of different pH, i.e., humins are insoluble in any pH 
range, humic acids are insoluble in acid medium, and fulvic acids are soluble throughout the 

pH range. In the determination of humic acids by NIR in compost, a correlation coefficient of 
0.94 and a standard error of estimation of 0.28 were obtained, values that can be considered 

very acceptable [97]. Other publications in mushroom compost [98], manure [99], and fat-

tening pig manure [100] have given excellent results to characterize the humic acids in this 

material.

In summary, numerous studies of compost or organic wastes using NIRS have demonstrated 

the efficacy of this methodology. For all the above reasons, this spectroscopic tool is an emerg-

ing technique in the analysis of environmental parameters. It offers several advantages over 
traditional analytical techniques, such as rapidity, ease of preparation and handling of sam-

ples (no reagents are required), and low cost.

Nomenclature

ANN Artificial Neural Networks

HAc Acetic acid

ADF Acid detergent fiber

ADIN Acid detergent insoluble nitrogen

ADFCP Acid detergent insoluble protein

CEC Cation exchange capacity

R2/r2 Coefficient of determination

R2c/R2p/R2cv  Coefficient of determination of the calibration/prediction/
cross-validation

CP Crude protein

Cys Cystine

DT Detrending
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DM Dry matter

DDM Digestible dry matter

DNDF Digestible neutral detergent fiber

DOM Digestible organic matter

EtOH Ethanol

FD First derivate

GH Global spectral distance

INDF Indigestible neutral detergent fiber

IVD In vitro digestibility

IAD Index of Absorbance Difference

DRIS Integrated System of Diagnosis and Recommendation

Lac Lactic acid

LOS Linear offset subtraction

Lys Lysine

H Mahalanobis distance values

MMN Maximum-minimum normalization

ME Metabolizable energy

Met Methionine

MPLSR/MPLS Modified partial least-squares regression

MLR Multiple linear regression

MSC Multiplicative scatter correction

MARS Multivariate adaptive regression splines

NIRS Near infrared reflectance spectroscopy

NH Neighborhood spectral distance

NDF Neutral detergent fiber

NDFCP Neutral detergent insoluble protein

NDSC Neutral detergent-soluble carbohydrates

NDSF Neutral detergent-soluble fiber

NDP No data preprocessing

NPN Nonprotein nitrogen
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NMSI Normalized soil moisture index

PLSR/PLS Partial least squares regression

PCR Principal components regression

A Relative absorbance values

RPD Residual prediction deviation

RPDc/RPDp/RPDcv  Residual prediction deviation of the calibration/prediction/

cross-validation

RMSECV Root mean square error of cross validation

RMSEE Root mean square error of estimation

RMSEP Root mean square error of prediction

SED Second derivate

SWIR Shortwave infrared

SN Soluble nitrogen

TSS Soluble solids content

SOM Soil organic matter

SS Spectral smoothing

SEC Standard error of calibration

SECV Standard error of cross-validation

SEP Standard error of prediction

SNV/SNV-D Standard normal variate, detrending

SR Sufficiency range

SSE Squared sum estimation

t-test Student's t-test

SSL Subtraction of a straight line

Thr Threonine

TA Titratable acidity

TN Total nitrogen

TCP True protein

Trp Tryptophan

VN Vector normalization
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