287 research outputs found

    A Proton Synchrotron Blazar Model for Flaring in Markarian~501

    Get PDF
    (abr.) The spectral energy distribution (SED) of blazars typically has a double-humped appearance usually interpreted in terms of synchrotron self-Compton models. In proton blazar models, the SED is instead explained in terms of acceleration of protons and subsequent cascading. We discuss a variation of the Synchrotron Proton Blazar model, first proposed by M\"ucke & Protheroe (1999), in which the low energy part of the SED is mainly synchrotron radiation by electrons co-accelerated with protons which produce the high energy part of the SED mainly asproton synchrotron radiation. Using a Monte Carlo/numerical technique to simulate the interactions and subsequent cascading of the accelerated protons, we are able to fit the observed SED of Markarian 501 during the April 1997 flare. We find that the emerging cascade spectra initiated by gamma-rays from π0\pi^0 decay and by e±e^\pm from μ±\mu^\pm decay turn out to be relatively featureless. Synchrotron radiation produced by μ±\mu^\pm from π±\pi^\pm decay, and even more importantly by protons, and subsequent synchrotron-pair cascading, is able to reproduce well the high energy part of the SED. For this fit we find that synchrotron radiation by protons dominates the TeV emission, pion photoproduction being less important with the consequence that we predict a lower neutrino flux than in other proton blazar models.Comment: 28 pages, 8 Figures, accepted for publication in Astropart.Phy

    Neutrino Emission from HBLs and LBLs

    Get PDF
    The Synchrotron Proton Blazar model is a promising model to explain high energy emission from gamma-ray loud BL Lac objects like Mkn 421. In contrast to leptonic models, the hadronic explanation of gamma-ray emission predicts ultrahigh energy neutrinos. The predicted neutrino spectra from a typical High-energy cutoff BL Lac Object (HBL) and a Low-energy cutoff BL Lac Object (LBL) are presented. We find that cooling due to muon synchrotron radiation causes a cutoff of the neutrino spectrum at ∼1018\sim 10^{18} eV, with the exception of νμ\nu_\mu from kaon decay which may extend to higher energies if meson production takes place in the secondary resonance region of the cross section. The impact of the neutrino output from both source populations to the diffuse neutrino background is discussed.Comment: 4 pages, 3 figures, to appear in: Proc. 27th Int. Cosmic Ray Conf., Hamburg/German

    Monte-Carlo simulations of photohadronic processes in astrophysics

    Get PDF
    A new Monte Carlo program for photohadronic interactions of relativistic nucleons with an ambient photon radiation field is presented. The event generator is designed to fulfil typical astrophysical requirements, but can also be used for radiation and background studies at high energy colliders such as LEP2 and HERA, as well as for simulations of photon induced air showers. We consider the full photopion production cross section from the pion production threshold up to high energies. It includes resonance excitation and decay, direct single pion production and diffractive and non-diffractive multiparticle production. The cross section of each individual process is calculated by fitting experimental data, while the kinematics is determined by the underlying particle production process. We demonstrate that our model is capable of reproducing known accelerator data over a wide energy range.Comment: 39 pages, 17 figures, submitted to Comp.Phys.Co

    Application of the synchrotron proton blazar model to BL Lac objects

    Get PDF
    We apply the synchrotron proton blazar (SPB) model to the April 1997 flare of Markarian 501 and find we are able to fit the observed spectral energy distribution. We explore the effect of target photon density on the high energy part of the spectral energy distribution (SED) for fixed assumed magnetic field, emission region size and Doppler factor and find that the luminosity and peak frequency of the high energy part of the SED may depend on the luminosity of the low energy part of the SED in high-frequency peaked BL Lac objects (HBL).Comment: 4 pages, 3 figures, to appear in proceedings of ``Heidelberg International Symposium on High Energy Gamma-Ray Astronomy'' edited by Felix Aharonian and Heinz Voelk, AIP Conf. Pro

    Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements

    Full text link
    We discuss flavor-mixing probabilities and flavor ratios of high energy astrophysical neutrinos. In the first part of this paper, we expand the neutrino flavor-fluxes in terms of the small parameters U_{e3} and pi/4 - theta_{23}, and show that there are universal first and second order corrections. The second order term can exceed the first order term, and so should be included in any analytic study. We also investigate the probabilities and ratios after a further expansion around the tribimaximal value of sin^2 theta_{12} = 1/3. In the second part of the paper, we discuss implications of deviations of initial flavor ratios from the usually assumed, idealized flavor compositions for pion, muon-damped, and neutron beam sources, viz., (1 : 2 : 0), (0 : 1 : 0), and (1 : 0 : 0), respectively. We show that even small deviations have significant consequences for the observed flavor ratios at Earth. If initial flavor deviations are not taken into account in analyses, then false inferences for the values in the PMNS matrix elements (angles and phase) may result.Comment: 32 pages, 15 figures. Minor changes, matches version in JHE

    Making justice more accessible

    Get PDF
    From the point of view of the Citizen, Justice is not always readily accessible. Either because it is a lengthy process, potentially expensive, sometimes unclear or simply scary, people will often avoid or withdraw from a judicial process, especially in those cases that involve relatively small amounts. This results in the giving up of a basic right, with the potential loss of rightful benefits. In this paper we briefly analyze the main aspects that impair access to Justice nowadays. We then move on to look at recent technological developments in the field of Online Dispute Resolution to argue that these can, in the near future, have a significant role in improving access to Justice. Specifically, we analyze the UMCourt Conflict Resolution Framework, developed by our research team, and address the different dimensions in which such tools contribute to make Justice more accessible, namely through better access to useful information, support in decision-making or more cost-effective processes.Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within projects FCOMP-01-0124-FEDER-028980 (PTDC/EEISII/1386/ 2012) and PEst-OE/EEI/UI0752/201

    Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films

    Get PDF
    Despite superb instrumental resolution in modern transmission electron microscopes (TEM), high-resolution imaging of organic two-dimensional (2D) materials is a formidable task. Here, we present that the appropriate selection of the incident electron energy plays a crucial role in reducing the gap between achievable resolution in the image and the instrumental limit. Among a broad range of electron acceleration voltages (300 kV, 200 kV, 120 kV, and 80 kV) tested, we found that the highest resolution in the HRTEM image is achieved at 120 kV, which is 1.9 Å. In two imine-based 2D polymer thin films, unexpected molecular interstitial defects were unraveled. Their structural nature is identified with the aid of quantum mechanical calculations. Furthermore, the increased image resolution and enhanced image contrast at 120 kV enabled the detection of functional groups at the pore interfaces. The experimental setup has also been employed for an amorphous organic 2D material

    Differential Effect of Retroactive Interference on Object and Spatial Memory in the Course of Healthy Aging and Neurodegeneration

    Get PDF
    Objective: In subjects with mild cognitive impairment (MCI), interference during memory consolidation may further degrade subsequent recall of newly learned information. We investigated whether spatial and object memory are differentially susceptible to interference.Method: Thirty-nine healthy young subjects, 39 healthy older subjects, and 12 subjects suffering from MCI encoded objects and their spatial position on a 4-by-5 grid. Encoding was followed by either: (i) a pause; (ii) an interference task immediately following encoding; or (iii) an interference task following encoding after a 6-min delay. Type of interference (no, early, delayed) was applied in different sessions and order was counterbalanced. Twelve minutes after encoding, subjects saw objects previously presented or new ones. Subjects indicated whether they recognized the object, and if so, the objects’ position during encoding.Results: Interference during consolidation provoked a negative effect on spatial memory in young more than older controls. In MCI, object but not spatial memory was affected by interference. Furthermore, a shift from fine- to coarse-grained spatial representation was observed in MCI. No differential effect of early vs. late interference (EI vs. LI) in either of the groups was detected.Conclusions: Data show that consolidation in healthy aging and MCI differs from consolidation in young controls. Data suggest differential processes underlying object and spatial memory and that these are differentially affected by aging and MCI
    • …
    corecore