5 research outputs found

    Detection in whole blood of autoantibodies for the diagnosis of connective tissue diseases in near patient testing condition

    No full text
    International audienceA novel technology, photonic ring immunoassay (PRI), for detecting 12 autoantibodies simultaneously in whole blood in less than 15 minutes was evaluated by comparing results from 235 clinically diagnosed patients with standard laboratory tests. The overall agreement was greater than 91% for 10 of the 12 assays, with positive percent agreement greater than 89% for 9 of the assays and negative percent agreement greater than 91% for 10 of them. Thus, the clinical sensitivities and specificities were similar for the 2 methods. In addition, 199 normal blood donors were tested on the ANA 12 PRI, yielding specificities greater than 97.5% for all assays. This proof of concept study shows that this new system is suitable for point of care testing for clinically useful autoantibodies, allowing the doctor to have test results in minutes rather than days

    BNT162b2 vaccine-induced humoral and cellular responses against SARS-CoV-2 variants in systemic lupus erythematosus

    No full text
    International audienceObjectives Our aim was to evaluate systemic lupus erythematosus (SLE) disease activity and SARS-CoV-2-specific immune responses after BNT162b2 vaccination.Methods In this prospective study, disease activity and clinical assessments were recorded from the first dose of vaccine until day 15 after the second dose in 126 patients with SLE. SARS-CoV-2 antibody responses were measured against wild-type spike antigen, while serum-neutralising activity was assessed against the SARS-CoV-2 historical strain and variants of concerns (VOCs). Vaccine-specific T cell responses were quantified by interferon-γ release assay after the second dose.Results BNT162b2 was well tolerated and no statistically significant variations of BILAG (British Isles Lupus Assessment Group) and SLEDAI (SLE Disease Activity Index) scores were observed throughout the study in patients with SLE with active and inactive disease at baseline. Mycophenolate mofetil (MMF) and methotrexate (MTX) treatments were associated with drastically reduced BNT162b2 antibody response (β=−78, p=0.007; β=−122, p<0.001, respectively). Anti-spike antibody response was positively associated with baseline total immunoglobulin G serum levels, naïve B cell frequencies (β=2, p=0.018; β=2.5, p=0.003) and SARS-CoV-2-specific T cell response (r=0.462, p=0.003). In responders, serum neutralisation activity decreased against VOCs bearing the E484K mutation but remained detectable in a majority of patients.Conclusion MMF, MTX and poor baseline humoral immune status, particularly low naïve B cell frequencies, are independently associated with impaired BNT162b2 mRNA antibody response, delineating patients with SLE who might need adapted vaccine regimens and follow-up

    IgA dominates the early neutralizing antibody response to SARS-CoV-2

    No full text
    International audienceHumoral immune responses are typically characterized by primary IgM antibody responses followed by secondary antibody responses associated with immune memory and comprised of of IgG, IgA and IgE. Here we measured acute humoral responses to SARS-CoV-2, including the frequency of antibody-secreting cells and the presence of SARS-CoV-2-specific neutralizing antibodies in the serum, saliva and broncho-alveolar fluid of 159 patients with COVID-19. Early SARS-CoV-2-specific humoral responses were dominated by IgA antibodies. Peripheral expansion of IgA plasmablasts with mucosal-homing potential was detected shortly after the onset of symptoms and peaked during the third week of the disease. The virus-specific antibody responses included IgG, IgM and IgA, but IgA contributed to virus neutralization to a greater extent compared with IgG. Specific IgA serum concentrations decreased notably one month after the onset of symptoms, but neutralizing IgA remained detectable in saliva for a longer time (days 49 to 73 post symptoms). These results represent a critical observation given the emerging information as to the types of antibodies associated with optimal protection against re-infection, and whether vaccine regimens should consider targeting a potent but potentially short-lived IgA response

    Pre-COVID-19 Immunity to Common Cold Human Coronaviruses Induces a Recall-Type IgG Response to SARS-CoV-2 Antigens Without Cross-Neutralisation

    No full text
    The capacity of pre-existing immunity to human common coronaviruses (HCoV) to cross-protect against de novo COVID-19is yet unknown. In this work, we studied the sera of 175 COVID-19 patients, 76 healthy donors and 3 intravenous immunoglobulins (IVIG) batches. We found that most COVID-19 patients developed anti-SARS-CoV-2 IgG antibodies before IgM. Moreover, the capacity of their IgGs to react to beta-HCoV, was present in the early sera of most patients before the appearance of anti-SARS-CoV-2 IgG. This implied that a recall-type antibody response was generated. In comparison, the patients that mounted an anti-SARS-COV2 IgM response, prior to IgG responses had lower titres of anti-beta-HCoV IgG antibodies. This indicated that pre-existing immunity to beta-HCoV was conducive to the generation of memory type responses to SARS-COV-2. Finally, we also found that pre-COVID-19-era sera and IVIG cross-reacted with SARS-CoV-2 antigens without neutralising SARS-CoV-2 infectivity in vitro . Put together, these results indicate that whilst pre-existing immunity to HCoV is responsible for recall-type IgG responses to SARS-CoV-2, it does not lead to cross-protection against COVID-19
    corecore