229 research outputs found

    Non-coding regulatory elements: potential roles in disease and the case of epilepsy

    Get PDF
    Non-coding DNA (ncDNA) refers to the portion of the genome that does not code for proteins and accounts for the greatest physical proportion of the human genome. ncDNA includes sequences that are transcribed into RNA molecules, such as ribosomal RNAs (rRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and un-transcribed sequences that have regulatory functions, including gene promoters and enhancers. Variation in non-coding regions of the genome have an established role in human disease, with growing evidence from many areas, including several cancers, Parkinson's disease and autism. Here, we review the features and functions of the regulatory elements that are present in the non-coding genome and the role that these regions have in human disease. We then review the existing research in epilepsy and emphasise the potential value of further exploring non-coding regulatory elements in epilepsy. In addition, we outline the most widely used techniques for recognising regulatory elements throughout the genome, current methodologies for investigating variation and the main challenges associated with research in the field of non-coding DNA

    Flexible Data Analysis Pipeline for High-Confidence Proteogenomics.

    Get PDF
    Proteogenomics leverages information derived from proteomic data to improve genome annotations. Of particular interest are "novel" peptides that provide direct evidence of protein expression for genomic regions not previously annotated as protein-coding. We present a modular, automated data analysis pipeline aimed at detecting such "novel" peptides in proteomic data sets. This pipeline implements criteria developed by proteomics and genome annotation experts for high-stringency peptide identification and filtering. Our pipeline is based on the OpenMS computational framework; it incorporates multiple database search engines for peptide identification and applies a machine-learning approach (Percolator) to post-process search results. We describe several new and improved software tools that we developed to facilitate proteogenomic analyses that enhance the wealth of tools provided by OpenMS. We demonstrate the application of our pipeline to a human testis tissue data set previously acquired for the Chromosome-Centric Human Proteome Project, which led to the addition of five new gene annotations on the human reference genome

    The cultural capitalists: notes on the ongoing reconfiguration of trafficking culture in Asia

    Get PDF
    Most analysis of the international flows of the illicit art market has described a global situation in which a postcolonial legacy of acquisition and collection exploits cultural heritage by pulling it westwards towards major international trade nodes in the USA and Europe. As the locus of consumptive global economic power shifts, however, these traditional flows are pulled in other directions: notably for the present commentary, towards and within Asia

    Genome-wide association study: Exploring the genetic basis for responsiveness to ketogenic dietary therapies for drug-resistant epilepsy

    Get PDF
    OBJECTIVE: With the exception of specific metabolic disorders, predictors of response to ketogenic dietary therapies (KDTs) are unknown. We aimed to determine whether common variation across the genome influences the response to KDT for epilepsy. METHODS: We genotyped individuals who were negative for glucose transporter type 1 deficiency syndrome or other metabolic disorders, who received KDT for epilepsy. Genotyping was performed with the Infinium HumanOmniExpressExome Beadchip. Hospital records were used to obtain demographic and clinical data. KDT response (β‰₯50% seizure reduction) at 3-month follow-up was used to dissect out nonresponders and responders. We then performed a genome-wide association study (GWAS) in nonresponders vs responders, using a linear mixed model and correcting for population stratification. Variants with minor allele frequency <0.05 and those that did not pass quality control filtering were excluded. RESULTS: After quality control filtering, the GWAS of 112 nonresponders vs 123 responders revealed an association locus at 6p25.1, 61 kb upstream of CDYL (rs12204701, P = 3.83 Γ— 10-8 , odds ratio [A] = 13.5, 95% confidence interval [CI] 4.07-44.8). Although analysis of regional linkage disequilibrium around rs12204701 did not strengthen the likelihood of CDYL being the candidate gene, additional bioinformatic analyses suggest it is the most likely candidate. SIGNIFICANCE: CDYL deficiency has been shown to disrupt neuronal migration and to influence susceptibility to epilepsy in mice. Further exploration with a larger replication cohort is warranted to clarify whether CDYL is the causal gene underlying the association signal

    Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    Get PDF
    Background: Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders

    Novel Association Strategy with Copy Number Variation for Identifying New Risk Loci of Human Diseases

    Get PDF
    Copy number variations (CNV) are important causal genetic variations for human disease; however, the lack of a statistical model has impeded the systematic testing of CNVs associated with disease in large-scale cohort.Here, we developed a novel integrated strategy to test CNV-association in genome-wide case-control studies. We converted the single-nucleotide polymorphism (SNP) signal to copy number states using a well-trained hidden Markov model. We mapped the susceptible CNV-loci through SNP site-specific testing to cope with the physiological complexity of CNVs. We also ensured the credibility of the associated CNVs through further window-based CNV-pattern clustering. Genome-wide data with seven diseases were used to test our strategy and, in total, we identified 36 new susceptible loci that are associated with CNVs for the seven diseases: 5 with bipolar disorder, 4 with coronary artery disease, 1 with Crohn's disease, 7 with hypertension, 9 with rheumatoid arthritis, 7 with type 1 diabetes and 3 with type 2 diabetes. Fifteen of these identified loci were validated through genotype-association and physiological function from previous studies, which provide further confidence for our results. Notably, the genes associated with bipolar disorder converged in the phosphoinositide/calcium signaling, a well-known affected pathway in bipolar disorder, which further supports that CNVs have impact on bipolar disorder.Our results demonstrated the effectiveness and robustness of our CNV-association analysis and provided an alternative avenue for discovering new associated loci of human diseases

    RNAcentral 2021: secondary structure integration, improved sequence search and new member databases

    Get PDF
    RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences that provides a single access point to 44 RNA resources and >18 million ncRNA sequences from a wide range of organisms and RNA types. RNAcentral now also includes secondary (2D) structure information for >13 million sequences, making RNAcentral the world’s largest RNA 2D structure database. The 2D diagrams are displayed using R2DT, a new 2D structure visualization method that uses consistent, reproducible and recognizable layouts for related RNAs. The sequence similarity search has been updated with a faster interface featuring facets for filtering search results by RNA type, organism, source database or any keyword. This sequence search tool is available as a reusable web component, and has been integrated into several RNAcentral member databases, including Rfam, miRBase and snoDB. To allow for a more fine-grained assignment of RNA types and subtypes, all RNAcentral sequences have been annotated with Sequence Ontology terms. The RNAcentral database continues to grow and provide a central data resource for the RNA community. RNAcentral is freely available at https://rnacentral.org

    Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater

    Get PDF
    Axenic gametes of the marine green macroalga Ulva mutabilis Foyn (Ria Formosa, locus typicus) exhibit abnormal development into slow-growing callus-like colonies with aberrant cell walls. Under laboratory conditions, it was previously demonstrated that all defects in growth and thallus development can be completely abolished when axenic gametes are inoculated with a combination of two specific bacterial strains originally identified as Roseo-bacter sp. strain MS2 and Cytophaga sp. strain MS6. These bacteria release diffusible morphogenetic compounds (= morphogens), which act similar to cytokinin and auxin. To investigate the ecological relevance of the waterborne bacterial morphogens, seawater samples were collected in the Ria Formosa lagoon (Algarve, Southern Portugal) at 20 sampling sites and tidal pools to assess their morphogenetic effects on the axenic gametes of U. mutabilis. Specifically the survey revealed that sterile-filtered seawater samples can completely recover growth and morphogenesis of U. mutabilis under axenic conditions. Morphogenetic activities of free-living and epiphytic bacteria isolated from the locally very abundant Ulva species (i.e., U. rigida) were screened using a multiwell-based testing system. The most represented genera isolated from U. rigida were Alteromonas, Pseudoalteromonas and Sulfitobacter followed by Psychrobacter and Polaribacter. Several naturally occurring bacterial species could emulate MS2 activity (= induction of cell divisions) regardless of taxonomic affiliation, whereas the MS6 activity (= induction of cell differentiation and cell wall formation) was species-specific and is probably a feature of difficult-to-culture bacteria. Interestingly, isolated bacteroidetes such as Algoriphagus sp. and Polaribacter sp. could individually trigger complete Ulva morphogenesis and thus provide a novel mode of action for bacterial-induced algal development. This study also highlights that the accumulation of algal growth factors in a shallow water body separated from the open ocean by barrier islands might have strong implications to, for example, the wide usage of natural coastal seawater in algal (land based) aquacultures of Ulva

    Species Specificity in Major Urinary Proteins by Parallel Evolution

    Get PDF
    Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1) diversity, to enable the signaling of multiple behaviors, 2) dynamic regulation, to indicate age and dominance, and 3) species-specificity. Recently, the major urinary proteins (Mups) have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues

    Differentiation of haploid and diploid fertilities in Gracilaria chilensis affect ploidy ratio

    Get PDF
    Background Algal isomorphic biphasic life cycles alternate between free-living diploid (tetrasporophytes) and haploid (dioicious gametophytes) phases and the hypotheses explaining their maintenance are still debated. Classic models state that conditional differentiation between phases is required for the evolutionary stability of biphasic life cycles while other authors proposed that the uneven ploidy abundances observed in the field are explained by their cytological differences in spore production. Results We monitored the state and fate of individuals of the red seaweed Gracilaria chilensis periodically for 3 years in five intertidal pools from two sites with distinct conditions. We tested for differentiation in fecundity and spore survival among the gametophyte males and females (haploids) and the tetrasporophytes (diploids). We tested for the influence of fecundity and spore survival on the observed uneven ploidy abundances in recruits. The probability of a frond becoming fecund was size-dependent, highest for the haploid males and lowest for the haploid females, with the diploids displaying intermediate probabilities. Fecund diploids released more tetraspores than carpospores released by the haploid females. Spore survival depended on ploidy and on the local density of co-habiting adult fronds. An advantage of diploid over haploid germlings was observed at very low and very high adult fronds densities. Conclusions Neither spore production nor spore survival determined the highly variable ploidy ratio within G. chilensis recruits. This result invalidates the hypothesis of natural cytological differences in spore production as the only driver of uneven field ploidy abundances in this species. Diploid spores (carpospores) survived better than haploid spores (tetraspores), especially in locations and time periods that were associated with the occurrence of strong biotic and abiotic stressors. We hypothesise that carpospore survival is higher due to support by their haploid female progenitors passing-on nutrients and chemical compounds improving survival under stressful conditions.AHE was supported by fellowships SFRH/BPD/63703/2009, SFRH/BPD/ 107878/2015 and UID/Multi/04326/2016 of the National Science Foundation FCT of Portugal.info:eu-repo/semantics/publishedVersio
    • …
    corecore