28 research outputs found

    Control of anti-apoptotic and antioxidant pathways in neural cells

    Get PDF
    Oxidative stress is a feature of many chronic neurodegenerative diseases as well as a contributing factor in acute disorders including stroke. Fork head class of transcription factors (Foxos) play a key role in promoting oxidative stress-induced apoptosis in neurons through the upregulation of a number of pro-apoptotic genes. Here I demonstrate that synaptic NMDA receptor activity not only promotes Foxos nuclear exclusion but also suppresses the expression of Foxo1 in a PI3K-dependent fashion. I also found that Foxo1 is in fact, a Foxo target gene and that it is subject to a feed-forward inhibition by synaptic activity, which is thought to result in longerterm suppression of Foxo downstream gene expression than previously thought. The nuclear factor (erythroid 2-related) factor 2 (Nrf2) is another transcription factor involved in oxidative stress and the key regulator of many genes, whose products form important intrinsic antioxidant systems. In the CNS, artificial activation of Nrf2 in astrocytes has been shown to protect nearby neurons from oxidative insults. However, the extent to which Nrf2 in astrocytes could respond to endogenous signals such as mild oxidative stress is less clear. The data presented herein, demonstrate for the first time that endogenous Nrf2 could be activated by mild oxidative stress and that this activation is restricted to astrocytes. Contrary to the established dogma, I found that mild oxidative stress induces the astrocytic Nrf2 pathway in a manner distinct from the classical Keap1 antagonism employed by prototypical Nrf2 inducers. The mechanism was found to involve direct regulation of Nrf2's transactivation properties. Overall these results advance our knowledge of the molecular mechanism(s) associated with the control of endogenous antioxidant defences by physiological signals

    Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site:FOXO1 is a FOXO target gene

    Get PDF
    Activation of gene expression by FOXO transcription factors can promote neuronal death in response to loss of trophic support, or oxidative stress. The predominant neuronal FOXOs, FOXO1 and FOXO3, promote the expression of pro-death genes, such as Fas Ligand, Bim and Txnip. Neuroprotective signals initiated by neurotrophins, growth factors or synaptic activity trigger the nuclear export of FOXOs via activation of the PI3K-Akt pathway. One key aspect of FOXO regulation is that once PI3K-Akt activity has returned to baseline, FOXOs return to the nucleus to resume the activation of their target genes. Thus, the FOXO-inhibiting capacity of the PI3K-Akt pathway is thought to be short-lived. However, we show here that synaptic NMDA receptor activity not only triggers FOXO export, but also suppresses the expression of FOXO1. Blockade of PI3K activity prevents both FOXO nuclear export and suppression of FOXO1 expression, raising the possibility that FOXO1 is itself a FOXO target gene. We found that FOXO3, and to a lesser extent FOXO1 transactivates the FOXO1 promoter via a consensus FOXO binding site (GTA AAC AA), and also an upstream sequence resembling a classical FOXO-binding insulin response sequence (CAA AAC AA). Activity-dependent suppression of the FOXO1 promoter is mediated through the proximal GTAAACAA sequence. Similar suppression via this site is observed by activating neuronal IGF-1 receptors by exogenous insulin. Thus, through a feed-forward inhibition mechanism, synaptic activity triggers FOXO export resulting in suppression of FOXO1 expression. These results suggest that FOXO-inactivating signals are likely to result in longer-term inhibition of FOXO target gene expression than previously thought

    Activation of Nrf2-Regulated Glutathione Pathway Genes by Ischemic Preconditioning

    Get PDF
    Prophylactic pharmacological activation of astrocytic gene expression driven by the transcription factor Nrf2 boosts antioxidant defences and protects against neuronal loss in ischemia and other disease models. However, the role of Nrf2 in mediating endogenous neuroprotective responses is less clear. We recently showed that Nrf2 is activated by mild oxidative stress in both rodent and human astrocytes. Moreover, brief exposure to ischemic conditions was found to activate Nrf2 both in vivo and in vitro, and this was found to contribute to neuroprotective ischemic preconditioning. Here we show that transient ischemic conditions in vitro and in vivo cause an increase in the expression of Nrf2 target genes associated with the glutathione pathway, including those involved in glutathione biosynthesis and cystine uptake. Taken together, these studies indicate that astrocytic Nrf2 may represent an important mediator of endogenous neuroprotective preconditioning pathways

    The Subtype of GluN2 C-terminal Domain Determines the Response to Excitotoxic Insults

    Get PDF
    It is currently unclear whether the GluN2 subtype influences NMDA receptor (NMDAR) excitotoxicity. We report that the toxicity of NMDAR-mediated Ca(2+) influx is differentially controlled by the cytoplasmic C-terminal domains of GluN2B (CTD(2B)) and GluN2A (CTD(2A)). Studying the effects of acute expression of GluN2A/2B-based chimeric subunits with reciprocal exchanges of their CTDs revealed that CTD(2B) enhances NMDAR toxicity, compared to CTD(2A). Furthermore, the vulnerability of forebrain neurons in vitro and in vivo to NMDAR-dependent Ca(2+) influx is lowered by replacing the CTD of GluN2B with that of GluN2A by targeted exon exchange in a mouse knockin model. Mechanistically, CTD(2B) exhibits stronger physical/functional coupling to the PSD-95-nNOS pathway, which suppresses protective CREB activation. Dependence of NMDAR excitotoxicity on the GluN2 CTD subtype can be overcome by inducing high levels of NMDAR activity. Thus, the identity (2A versus 2B) of the GluN2 CTD controls the toxicity dose-response to episodes of NMDAR activity

    A comprehensive introduction to the genetic basis of non-syndromic hearing loss in the Saudi Arabian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hearing loss is a clinically and genetically heterogeneous disorder. Mutations in the <it>DFNB1 </it>locus have been reported to be the most common cause of autosomal recessive non-syndromic hearing loss worldwide. Apart from <it>DFNB1</it>, many other loci and their underlying genes have also been identified and the basis of our study was to provide a comprehensive introduction to the delineation of the molecular basis of non-syndromic hearing loss in the Saudi Arabian population. This was performed by screening <it>DFNB1 </it>and to initiate prioritized linkage analysis or homozygosity mapping for a pilot number of families in which <it>DFNB1 </it>has been excluded.</p> <p>Methods</p> <p>Individuals from 130 families of Saudi Arabian tribal origin diagnosed with an autosomal recessive non-syndromic sensorineural hearing loss were screened for mutations at the <it>DFNB1 </it>locus by direct sequencing. If negative, genome wide linkage analysis or homozygosity mapping were performed using Affymetrix GeneChip<sup>Âź </sup>Human Mapping 250K/6.0 Arrays to identify regions containing any known-deafness causing genes that were subsequently sequenced.</p> <p>Results</p> <p>Our results strongly indicate that <it>DFNB1 </it>only accounts for 3% of non-syndromic hearing loss in the Saudi Arabian population of ethnic ancestry. Prioritized linkage analysis or homozygosity mapping in five separate families established that their hearing loss was caused by five different known-deafness causing genes thus confirming the genetic heterogeneity of this disorder in the kingdom.</p> <p>Conclusion</p> <p>The overall results of this study are highly suggestive that underlying molecular basis of autosomal recessive non-syndromic deafness in Saudi Arabia is very genetically heterogeneous. In addition, we report that the preliminary results indicate that there does not seem to be any common or more prevalent loci, genes or mutations in patients with autosomal recessive non-syndromic hearing loss in patients of Saudi Arabian tribal origin.</p

    Establishing an online resource to facilitate global collaboration and inclusion of underrepresented populations:Experience from the MJFF Global Genetic Parkinson's Disease Project

    Get PDF
    Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.</p

    Embracing monogenic Parkinson's disease: the MJFF Global Genetic PD Cohort

    Get PDF
    © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Michael J. Fox Foundation for Parkinson's Research. Grant Number: ID 15015.02. NIHR Cambridge Biomedical Research Centre. Grant Number: BRC-1215-20014info:eu-repo/semantics/publishedVersio

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Autism and ADHD in the Era of Big Data; An Overview of Digital Resources for Patient, Genetic and Clinical Trials Information

    No full text
    Even in the era of information “prosperity” in the form of databases and registries that compile a wealth of data, information about ASD and ADHD remains scattered and disconnected. These data systems are powerful tools that can inform decision-making and policy creation, as well as advancing and disseminating knowledge. Here, we review three types of data systems (patient registries, clinical trial registries and genetic databases) that are concerned with ASD or ADHD and discuss their features, advantages and limitations. We noticed the lack of ethnic diversity in the data, as the majority of their content is curated from European and (to a lesser extent) Asian populations. Acutely aware of this knowledge gap, we introduce here the framework of the Neurodevelopmental Disorders Database (NDDB). This registry was designed to serve as a model for the national repository for collecting data from Saudi Arabia on neurodevelopmental disorders, particularly ASD and ADHD, across diverse domains
    corecore