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Abstract 

Oxidative stress is a feature of many chronic neurodegenerative diseases as well as a 

contributing factor in acute disorders including stroke. Fork head class of 

transcription factors (Foxos) play a key role in promoting oxidative stress-induced 

apoptosis in neurons through the upregulation of a number of pro-apoptotic genes. 

Here I demonstrate that synaptic NMDA receptor activity not only promotes Foxos 

nuclear exclusion but also suppresses the expression of Foxo1 in a PI3K-dependent 

fashion. I also found that Foxo1 is in fact, a Foxo target gene and that it is subject to 

a feed-forward inhibition by synaptic activity, which is thought to result in longer-

term suppression of Foxo downstream gene expression than previously thought. The 

nuclear factor (erythroid 2-related) factor 2 (Nrf2) is another transcription factor 

involved in oxidative stress and the key regulator of many genes, whose products 

form important intrinsic antioxidant systems. In the CNS, artificial activation of Nrf2 

in astrocytes has been shown to protect nearby neurons from oxidative insults. 

However, the extent to which Nrf2 in astrocytes could respond to endogenous signals 

such as mild oxidative stress is less clear. The data presented herein, demonstrate for 

the first time that endogenous Nrf2 could be activated by mild oxidative stress and 

that this activation is restricted to astrocytes. Contrary to the established dogma, I 

found that mild oxidative stress induces the astrocytic Nrf2 pathway in a manner 

distinct from the classical Keap1 antagonism employed by prototypical Nrf2 

inducers. The mechanism was found to involve direct regulation of Nrf2's 

transactivation properties. Overall these results advance our knowledge of the 

molecular mechanism(s) associated with the control of endogenous antioxidant 

defences by physiological signals.  
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Oxygen consumption through normal cell metabolism results in the generation of 

harmful reactive oxygen species (ROS). It normally would be assumed that, given its 

central role in physiology and survival, the brain would be enriched with protective 

mechanisms against oxidative stress. On the contrary, the brain is particularly 

vulnerable to the deleterious effects of ROS because of its high metabolic activity 

coupled with low levels of antioxidants and high abundance of heavy metal ions. 

(Reiter, 1995; Hardingham and Lipton; 2011Gandhi and Abramov, 2012). 

Oxidative stress is caused by an imbalance between the generation and the 

detoxification of ROS and it has been associated with acute and chronic neurological 

disorders. Cells' intrinsic antioxidant and neuroprotective pathways are subject to 

dynamic regulation, potentially allowing them to adapt to and survive various 

intrinsic and extrinsic stressors. Such pathways are essential, particularly in adult 

neurons, which exhibit a severely limited capacity for regeneration or de novo 

generation of neurons. However, the underlying molecular mechanisms, specifically 

in neural cells, are less understood.  

The aim of this thesis is to gain a better understanding of the control of neural 

intrinsic antioxidant and neuroprotective pathways by N-methyl D-aspartate receptor 

(NMDAR) mediated synaptic activity or mild oxidative stress. This introduction is 

intended to summarize some of the present knowledge on oxidative stress, generation 

of ROS and antioxidant defense mechanisms specifically those regulated by the 

transcription factor nuclear factor (erythroid 2-related) factor 2 (Nrf2), as well as the 

role of the fork head box O family of transcription factors (Foxo) in oxidative stress 

induced neuronal death. In addition, the introduction will include an overview on the 

NMDAR composition and their role in neuronal death and survival. 
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1.1 Oxidative stress 

It has been long recognised that oxidative stress plays an important role in the 

etiology of various pathological conditions including acute and chronic 

neurodegenerative disorders. Oxidative stress elicits its deleterious effect through 

inflicting damage to cellular biomolecules and it could occur as a secondary effect of 

a pre-existing pathological condition or could be the primary cause of the disease. 

 

1.1.1 Mechanisms of Oxidative stress damage 

Oxygen is required to sustain life, but paradoxically, highly toxic reactive oxygen 

species (ROS) are produced as a byproduct of its metabolism. Oxidative stress is a 

condition in which there is a mismatch between the production of ROS and the cell’s 

ability to detoxify these species and repair the damage. However, this imbalance 

results in the accumulation of damaged biomolecules that can cause cellular 

dysfunction, and for post-mitotic cells with relatively restricted replenishment such 

as neurons, cell death (Simonian and Coyle, 1996; Wang and Michaelis, 2010). ROS 

react with cellular components resulting in deleterious effects on their function. They 

can damage both nuclear and mitochondrial DNA, through inducing strand breaks 

and chemical alterations in the deoxyribose and in the purine and pyrimidine bases 

(Simonian and Coyle, 1996; Reiter, 1995). In addition to their role in 

pathophysiology, ROS are beneficial to cells in certain physiological processes such 

as signal transduction, immune defence and oxygen homeostasis (Allen and 

Bayraktutan, 2009). 

In terms of protein damage, ROS can oxidize the protein backbone, amino acid side 

chains and induce extensive protein-protein cross-linking at cysteine residues, 

carbonyl derivatives and other oxidized residues (Berlett and Stadtman, 1997; Kregel 

and Zhang, 2007). Oxidatively damaged proteins, many of which are critical in 

neuronal physiology or structure, lose their efficiency and eventually disturb cellular 

functions. For instance, oxidative damage can alter enzyme activity, modulate 



	
   4	
  

transcription factor activity and lead to the formation of protein aggregates (Kregel 

and Zhang, 2007). 

 

Polyunsaturated fatty acids (PUFA), which are abundant in the neural tissues, render 

lipids highly sensitive to oxidation by ROS (Kregel and Zhang, 2007). Oxidative 

lipid damage, termed lipid peroxidation, is initiated by the incorporation of oxygen 

into PUFA. This process compromises the membrane integrity by decreasing its 

fluidity, reducing membrane potential and thereby allowing ions such as Ca2+ to leak 

into the cell (Simonian and Coyle, 1996). 

 

1.1.2 Generation of reactive oxygen species (ROS)  

The term free radical refers to any species with an unpaired electron. The majority 

of free radicals have a high chemical reactivity, and can either react with each other 

or with non-radicals. Molecular oxygen O2 qualifies as a radical because it possesses 

two unpaired electrons each on a different orbital and both spinning in the same 

direction, however, unlike other radicals O2 reactivity is poor due to this parallel 

spin. Reactive oxygen species (ROS), is a collective descriptor that includes not 

only the oxygen radicals such as superoxide (O2
•—) and hydroxyl radical (OH•), but 

also some  (non-radical) derivatives such as hydrogen peroxide H2O2 (Halliwell, 

2006).  

 

 O2
•— is produced via the activity of mitochondrial and microsomal electron 

transport chains (McCord and Omar, 1993). Most of the O2 in aerobic organisms is 

reduced to water by the mitochondrial cytochrome c oxidase enzyme, which adds 

four electrons to O2 in a step-wise fashion resulting in the formation of two 

molecules of water. Although the partially reduced oxygen intermediates are usually 

retained by the cytochrome c oxidase until full reduction is achieved, other sites in 

the respiratory chain namely complex I and III may directly leak electrons to O2 

resulting in the formation of O2
•— (Turrens, 1997; Brookes, 2005).   



	
   5	
  

 

The mitochondrion, though the prime site for O2
•—  generation, is not the only source 

of O2
•—   in vivo. In fact, various cytosolic and membrane-bound enzymes are 

involved in the generation of O2
•—  , including nicotine amide adenine dinucleotide 

phosphate (NADPH) oxidase and Xanthine oxidase (Simonian and Coyle, 1996; 

Gandhi and Abramov, 2012). NADPH oxidase is a membrane enzyme and the first 

identified example of a system that generates ROS as a primary product rather than a 

byproduct (Bedard and Krause, 2007) It is a multi-subunit enzyme consisting of two 

membrane-bound components, several cytosolic proteins and a low-molecular-

weight G protein (Babior, 1999). Activation of the oxidase involves the 

phosphorylation of the cytosolic subunits leading to their translocation to the 

membrane and eventually the complete assembly of the complex.  This enzyme is 

present in phagocytes and in diverse brain cell types such as neurons, astrocytes 

(Noh and Koh, 2000) and microglia (Colton and Gilbert, 1987), in which it catalyses 

the production of O2
•—    from O2 and NADPH according to the following reaction 

(Ago et al., 1999): 

 

 

 

 

Xanthine oxidase (XOD) is another major cellular source of O2
•— . It originally exists 

in the form of xanthine dehydrogenase (XDH) and is converted to xanthine oxidase 

in cells under some pathological conditions either reversibly by the oxidation of 

sulfhydryl residues or irreversibly by partial cleavage of the xanthine dehydrogenase 

(Chung et al., 1997). However, both enzymes share the same general metabolic 

function, which is the conversion of hypoxanthine to xanthine and the subsequent 

production of uric acid. Xanthine oxidase is the O2
•—  producing form. It catalyses the 

conversion of hypoxanthine or xanthine to uric acid and superoxide using O2 as a co-

factor, while xanthine dehydrogenase utilizes the same substrates using NAD as a 
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cofactor to produce uric acid and NADPH instead of superoxide (Chung et al., 1997; 

Boueiz et al., 2008): 

 

 

 

  

Owing to its low reactivity and poor membrane permeability, O2
•— itself is not 

highly toxic to macromolecules, however, it is readily converted to more toxic 

species (Halliwell and Gutteridge, 1990; Starkov, 2010).  Moreover, O2
•— is 

converted spontaneously or enzymatically to H2O2. Unlike O2
•— , however, H2O2 has 

a higher oxidant potential, and being uncharged, can easily diffuse through cell 

membranes. Although H2O2 is an oxidizing agent itself, it is not reactive. However, 

in the presence of transition metals such as Fe2+, H2O2 is further reduced to the 

highly toxic radical OH•  via the Fenton reaction (Fig. I.1) (Halliwell and Gutteridge, 

1990; Hogg et al., 1992).  

 

Superoxide dismutase (SOD) in its three forms (cytosolic, extracellular Cu, Zn-SOD 

and mitochondrial Mg-SOD) eliminate O2
•—    by catalysing its dismutation, one O2

•— 

being reduced to H2O2  and the other oxidized to O2 (Fig. 1.1) (Fridovich, 1995). 

Although SOD is classified as a component of the antioxidant defences, due to its 

ability to metabolize the superoxide free radical to non-radical species (H2O2), 

excessive SOD gene expression, such as in individuals with Down syndrome, has 

been linked with premature aging, and neurodegeneration (Lejeune, 1990). 

Moreover, missense mutations in the cytosolic Cu/Zn form of SOD have been 

associated with familial ALS (Rosen et al., 1993).   

 

Besides SOD, a number of enzyme systems also generate H2O2. These include L-

amino acid oxidase, glycolate oxidase and monoamine oxidase (Reiter, 1995). The 
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mitochondrially located flavoenzyme, monoamine oxidase (MAO), catalyses the 

oxidative deamination of important neurotransmitters such as dopamine and 

serotonin. Two subtypes of monoamine oxidase have been identified: MAO-A and 

MAO-B. In the central nervous system (CNS), MAO-A is found in neurons while 

MAO-B is expressed in both neurons and astrocytes. MAO-B have been implicated 

in the etiology of Parkinson’s disease, as MAO-B accelerates the oxidation of 

dopamine in dopaminergic nerve axons resulting in elevated H2O2 generation beyond 

the capacity of cells’ antioxidant defence systems, eventually leading to neuronal 

destruction (Edmondson et al., 2009). In addition, superoxide is formed non-

enzymatically through the auto-oxidation of small molecules such as catecholamines 

(Blake et al., 1987), haemoglobin and myoglobin (Allen and Bayraktutan, 2009). 

 

 

 

 

 

Figure 1.1. H2O2 generation by SOD and the conversion of H2O2 to the highly 
toxic hydroxyl radical via the Fenton reaction.  
Molecular oxygen in the presence of electrons forms superoxide, which is readily 
converted to O2 and H2O2. H2O2 in return, can be further reduced in the presence of 
transition metals such as Fe2+ to the highly toxic hydroxyl radical (OH•): (1) The 
formation of superoxide by various sources such as mitochondrial oxidative 
metabolism and by the enzymatic activity of NADPH and xanthine oxidases among 
many other sources. (2) Superoxide conversion to H2O2 either spontaneously or 
enzymatically through the action of SOD. (3) The conversion of H2O2 to (OH•) via 
the Fenton reaction.  
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1.2. Oxidative stress and neuronal death 

It is widely accepted that mammalian neurons are among the longest-living cell 

types. However, neuronal death can occur naturally during embryonic and early 

postnatal development to ensure proper and precise synaptic connection, or as a 

pathological process in disease (Yuan et al., 2003). Oxidative stress can trigger 

neuronal death in various pathological scenarios and in this section I shall discuss the 

two main forms of cell death associated with oxidative stress; apoptosis and necrosis.  

 

1.2.1. Apoptosis 

Cells undergoing apoptosis display distinct morphological hallmarks, which include 

nuclear psyknosis, chromatic condensation, DNA fragmentation and cell rounding 

(Kerr et al., 1972; Yuan et al., 2003). This ordered morphology is a result of ATP-

requiring caspase-mediated cleavage.  Unlike necrosis, apoptotic cells have intact 

membranes and are not associated with inflammation. 

Apoptosis centres on proteolytic activation of caspases, a family of cysteine 

proteases, which target a wide range of proteins involved in cell survival, such as cell 

cycle control and DNA repair. Caspases also undergo autolytic activation and in turn 

cleave and activate other downstream caspases in the cascade leading to apoptosis. 

Based on the activation order in the cells, caspases are divided into initiator and 

effector groups, with the former activating the latter. Active initiator caspases 

(caspases 8-10) will cleave and activate effector caspases (caspase-3, -7 and -6) 

which in turn cleave specific substrates to produce the morphological and 

biochemical changes characteristic of apoptosis (Nijhawan et al., 2000).  
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To date, two major apoptotic pathways have been described: the extrinsic or death 

receptor pathway and the intrinsic or mitochondrial pathway. The extrinsic pathway 

involves the engagement of extracellular ligands with cell death receptors, such as 

Fas and members of the tumour necrosis factor (TNF) family (Ashkenazi and Dixit, 

1998). Fas ligand (FasL) and TNF bind their receptors and stimulate the recruitment 

of adaptor proteins such as Fas-associated death domain (FADD) and the TNF 

receptor 1- associated death domain protein (TRADD). The adaptor proteins in turn 

facilitate the recruitment of pro-caspase-8 (or -10) to the receptor complex and the 

formation of the death-inducing signalling complex (DISC), leading to the activation 

of the initiator caspases and subsequently the down stream effector caspases (Fig. 

1.2) (Yang et al., 1998; Elmore, 2007). 

 

The intrinsic apoptotic pathway is mediated by the mitochondria and is activated by 

a diverse array of non-receptor mediated extracellular and intracellular stimuli 

including toxins, oxidative stress, ischemia-reperfusion, DNA damage and loss of 

trophic/survival factors (Soriano et al., 2011; Foo et al., 2005). All these stimuli 

cause changes in the mitochondrial outer membrane, leading to increased membrane 

permeability and eventually the release of cytochrome c, which binds the cytosolic 

monomer apoptotic peptidase activating factor-1 (Apaf-1). The Apaf-1/cytochrome c 

complex then recruits and activates initiator caspase-9, which in turn activates the 

down stream effector caspases such as caspase-3, caspase-6 and caspase-7 (Fig. 1.2) 

(Nijhawan et al., 2000). 

The regulation of cytochrome c release occurs through members of the Bcl-2 family 

of proteins, which govern the mitochondrial membrane permeability. They are 

characterized by the presence of Bcl-2 homology (BH1-4) domains, and are divided 

into pro-apoptotic (Bax, Bim, Puma, Bak, Bid etc.) and anti-apoptotic (Bcl-2, Bcl-

xL, Bcl-xS, etc.) groups. Following apoptotic stimuli, Bax and Bak form oligomeric 

structures and translocate to the mitochondria where they promote outer membrane 

permeabilization and eventually lead to cytochrome c release (Kroemer et al., 2007). 

On the other hand, the Bcl-2 anti-apoptotic members localized to the mitochondria, 

sequester pro-apoptotic Bcl-2 members through binding to their BH3 domains, 
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preventing their activation/oligomerization and eventually inhibiting the release of 

cytochrome c (Lindsten et al., 2000).  

 

In addition to its detrimental effect, apoptosis fulfils a beneficial role in organs and 

limbs remodelling during embryogenesis, in tumour formation prevention and in 

normal cell turnover (Meier et al., 2000). Apoptosis occurs during neurodevelopment 

not only in the progenitor cells, but also in neurons and glia (Nijhawan et al., 2000). 

Studies underscored the importance of apoptosis in patterning of the CNS, as mutant 

mice deficient in key pro-apoptotic genes Casp3, Casp9 and Apaf1 all exhibited 

brain abnormalities and increased embryonic lethality (Kuan et al., 2000; Buss et al., 

2006). In addition to the physiological role of apoptosis, studies indicate that 

apoptosis plays an important role in neurodegeneration and in neuronal death in 

response to ischemic-hypoxia (Thompson, 1995). 
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Figure 1.2. Apoptosis signalling. 
The two main pathways of apoptosis are extrinsic and intrinsic. The extrinsic 
signalling pathway involves the binding of death receptors such as FasL receptors 
(FLR) and TNF receptors (TNFR) to their corresponding ligands and the subsequent 
recruitment of adaptor proteins such as FADD and TRADD. The adaptor proteins 
then associate with procaspase-8 or -10 forming DISC, which in turn leads to the 
activation of the initiator caspaseses-8, -10 and subsequently the down stream 
effector caspases-3, -7, -6. The intrinsic pathway is a mitochondrial-initiated event 
and is activated by a diverse array of non-receptor mediated stimuli, which cause 
changes to mitochondrial membrane permeability and the subsequent release of 
cytochrome c. The release of cytochrome c triggers effector caspases activation 
through formation of cytochrome c/Apaf-1/ caspase-9 complex. The release of 
cytochrome c is regulated by Bcl-2 family members (see above text). 
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1.2.2.  Necrosis  

Necrosis is usually elicited by exposure of cells to toxic substances or to severe 

mechanical or ischaemic/hypoxic insults, and is morphologically characterized by 

swelling of the intracellular organelles followed by swelling and rupture of both the 

plasma and nuclear membranes (Edinger and Thompson, 2004; Clarke, 1990). The 

loss of membrane integrity may be a consequence of metabolic failure, damage to 

membrane lipids, and/or dysfunction in ion pumps/channels, in addition to the 

release of excitatory amino acid neurotransmitters (in the case of neurons) (Werner 

and Engelhard, 2007; Zong and Thompson, 2006).  

 

While necrosis has long been regarded as an uncontrolled form of death, 

accumulating studies have suggested that necrosis can be a regulated event that 

contributes to pathological and physiological conditions (Edinger and Thompson, 

2004). Holler et al. and others have found receptor-interacting proteins kinase (RIP) 

to be crucial for programmed necrosis (Holler et al., 2000; Chan et al., 2003).  

 

Although necrosis induces inflammation which may lead to the death of 

neighbouring cells through the release of cytokines, the necrosis-induced 

inflammation have a positive role in the protection against viral infections (Edinger 

and Thompson, 2004). In regard to the CNS, necrosis has been associated with 

various acute and chronic neurodegenerative conditions including Alzheimer’s and 

Parkinson’s diseases, ischemia and traumatic brain injury (Yuan et al., 2003; Sattler 

and Tymianski, 2001; Werner and Engelhard, 2007). 
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1.2.3. Mechanisms of oxidative stress-induced cell death  

Oxidative stress-induced cell death displays characteristics of both apoptosis and 

necrosis. However, the same insult can lead to apoptosis or necrosis depending on its 

intensity, cell type, and the species and organism involved. According to the 

hypothesis and observations of Duvall and Wyllie, severe non-physiological levels of 

oxidative stress cause necrosis, rather than apoptosis  (Duvall and Wyllie, 1986). 

Excessive accumulation of lipid hydroperoxides, lipid peroxidation products, in 

response to oxidative stress induced by glutathione (GSH) depletion (an important 

antioxidant discussed in detail in section 1.4) leads to cell's demise by necrosis 

(Higuchi, 2004). However, several lines of evidence suggest the involvement of 

oxidative stress in apoptosis. For instance, H2O2 has been shown to induce apoptosis 

in B-cells (Takada et al., 2011) and in the CNS, chronic SOD inhibition results in the 

apoptotic degeneration of motor neurons (Rothstein et al., 1994) and PC12 neuronal 

cells (Troy and Shelanski, 1994). Moreover, cortical neurons undergoing GSH-

deprivation-induced oxidative stress, either by growing them in low cysteine media 

or through treatments with the glutamate analog homocysteate (HCA), suffer from 

apoptotic degeneration, which can be prevented by co-application of antioxidants 

(Ratan et al., 1994).  

 

Oxidative damage to DNA is believed to trigger apoptosis. Poly (ADP-ribose) 

polymerase, an enzyme involved in DNA damage repair, is activated under various 

conditions of DNA damage and is suggested to contribute to cell death by depleting 

the cell of NAD and ATP (Berger and Petzold, 1985; Schraufstatter et al., 1986).  

 

In addition to DNA damage, membrane integrity is thought to be compromised by 

oxidative stress. Rapid loss of membrane integrity is observed in neurons with 

concomitant nuclear condensation and DNA fragmentation following treatment with 

H2O2 (Higgins et al., 2009a).  

 



	
   14	
  

Furthermore, oxidative stress can trigger apoptosis through disturbing signalling 

pathways associated with growth factor receptor stimulation. Insulin-like growth 

factor I (IGF-I) is a classical neuroprotective factor, which upon binding to its 

receptor triggers the PI3K/Akt signalling pathway. Activation of the PI3K/Akt 

pathway in turn, inactivates Foxo transcription factors, responsible for 

transactivating a number of pro-death genes, through inhibitory phosphorylation. 

However, oxidative stress inactivates IGF-I receptor function through abnormal 

glycation and consequently induces neuronal death by stimulating Foxo3 (Davila and 

Torres-Aleman, 2008). 

1.2.4. Foxos and apoptosis 

The fork head box O family of transcription factors (Foxo) initially described in 

Drosophila melanogaster, are characterized by the presence of a conserved 100 

amino acid DNA binding domain, or forkhead domain. Owing to the presence of the 

DNA-binding domain, Foxo proteins not only act as transcrpitional activators but 

also as transcriptional repressors  possibly through interacting with other 

transcription factors and modulating their activity, hence exerting positive and 

negative effects on gene expression. However, the net effect of Foxos on gene 

expression depends on the promoter context and extracellular conditions. Foxos also 

harbour nuclear export and nuclear localization signal sequences allowing for 

nucleocytoplasmic shuttling (Fu and Tindall, 2008). The subcellular localization and 

transcriptional functions of Foxos are tightly controlled by multiple post-translational 

modifications, such as phosphorylation, acetylation, and ubiquitination (Vogt et al., 

2005). Depending on the nature of the stimuli, Foxos are subject to two types of 

phosphorylation: inhibitory phosphorylation  by a number of protein kinases 

including Akt, serum- and glucocorticoid-inducible kinase (SGK), Cyclin-dependent 

kinases-2 (CDK2) and  I kappa B kinase (IKK), and secondly activating 

phosphorylation mediated by other kinases such as c-Jun NH2-terminal kinase  

(JNK) and mammalian Sterile 20-like kinase 1 (MST1) (Brunet et al., 2004; Huang 

and Tindall, 2007). All Foxo proteins are negatively regulated by Akt-mediated 

phosphorylation at three specific sites in response to growth factor and insulin except 



	
   15	
  

for Foxo6, which contains only two sites and is predominantly nuclear (van der 

Heide et al., 2005; Salih and Brunet,  

 

2008). Phosphorylation of Foxo transcription factors by Akt promotes their nuclear 

export and subsequent ubiquitination and degradation. Direct phosphorylation of 

Foxos by Akt is initiated in response to growth factors, insulin and other cell stimuli 

(Obsil and Obsilova, 2008). 

Emerging evidence suggests the involvement of Foxos in multiple biological 

functions including cell cycle arrest, differentiation, stress response and apoptosis 

(Obsil and Obsilova, 2008). Foxos regulate components of both the intrinsic and 

extrinsic apoptosis pathway. In lymphocytes, Foxo1 was reported to induce Bim 

expression upon growth factor withdrawal (Dijkers et al., 2000). Besides Bim, Foxo3 

has been shown to  upregulate Puma gene expression in response to cytokine or 

growth factor withdrawal (You et al., 2006). Furthermore, Foxo4 induces apoptosis 

in part by suppressing the levels of anti-apoptotic BCL-XL through the 

transcriptional repressor BCL-6 (Tang et al., 2002). 

 

In addition, Foxos mediate the extrinsic apoptotic pathway through enhancing the 

transcription of pro-apoptotic factors such as FasL and tumour necrosis factor-related 

apoptosis inducing ligand (TRAIL) (Brunet et al., 1999; Modur et al., 2002). FasL 

was one of the early pro-apoptotic genes identified as a Foxo target gene. Previous 

studies demonstrated a critical role of FasL in mediating Foxo-induced apoptosis in 

cerebellar granule cells and Jurkat T cells (Brunet et al., 1999). Moreover, mutations 

in  phosphatase and tensin homologue (PTEN) are very common in prostate cancers 

leading to constitutive activation of Akt pathway and eventually the loss of FOXO1 

and FOXO3 activity. Reduce TRAIL expression in human prostate cancer was 

directly linked to the loss of FOXO activity. However, studies revealed that 

overexpression of FOXO1 and FOXO3 promoted apoptosis and increased  TRAIL 

mRNA levels in prostate cancer cell lines (Modur et al., 2002). Thus, Foxos regulate 
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apoptosis through controlling the transcription of core components of both the 

intrinsic and extrinsic pathway. 

 

In the CNS, apoptosis is the primary cellular output of Foxo activation in response to 

environmental stressors such as trophic factor deprivation (Gilley et al., 2003), 

oxidative stress (Lehtinen et al., 2006) or extrasynaptic NMDAR activation (Dick 

and Bading, 2010). Foxo activity was shown to mediate Bim-dependent apoptosis in 

sympathetic neurons undergoing neuronal growth factor withdrawal-induced 

apoptosis (Gilley et al., 2003). FasL promoter harbours three Foxo DNA binding 

sites, and activation of Foxo3 was shown to cause cell death in motor and cerebral 

neurons, this killing effect, however, was attenuated in neurons derived from FasL 

mutant mice (Brunet et al., 1999; Barthelemy et al., 2004). In neuroblastoma cells, 

Foxo1 induces apoptosis through activation of pro-death genes Noxa and Bim 

(Obexer et al., 2007). Also Foxos activation was associated with hippocampal injury 

following prolonged seizures (Shinoda et al., 2004). Conversely, Foxo inactivation 

may contribute to the neuroprotective effect of estradiol observed in rodent models 

of stroke (Won et al., 2006). In humans, FOXO3 haplotype analysis revealed 

increased risk of stroke and increased mortality for carriers of certain FOXO3 

haplotypes (Kuningas et al., 2007; Maiese et al., 2007).  

 

Outside the CNS, Foxos coordinate diverse cellular functions. These multi-tasking 

proteins play key roles in many biological process including, cell-cycle progression, 

differentiation, cell growth and development, immune system activation and 

metabolism (Dansen and Burgering, 2008; Maiese et al., 2008; Salih and Brunet, 

2008). For instance Foxo1 plays a significant role in maintaining energy metabolism 

by increasing hepatic gluconeogenesis, reducing insulin secretion and regulating 

energy storage and expenditure through adipose tissue. Foxo1 exerts a further level 

of metabolism control by coordinating neuropeptide production in hypothalamic 

neurons, which regulates food intake and metabolite homeostasis and by regulating 

skeletal muscle atrophy in response to starvation or inadequate trophic support (Salih 
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and Brunet, 2008; Kousteni, 2012). 

 

 

Studies in several animal models support a role for Foxo proteins as tumour 

suppressors, owing to their established involvement in cell-cycle arrest, apoptosis, 

DNA-damage repair and angiogenesis restriction. Moreover, spontaneous tumour 

formation in Foxo conditional knockout mice, confirms the tumour suppressing-

effects of Foxos (Dansen and Burgering, 2008).  

 

1.2.5. Foxos and oxidative stress 

Foxos  play a key role in promoting oxidative stress-induced apoptosis in neurons 

through the upregulation of a number of pro-apoptotic genes (Lehtinen et al., 2006; 

Davila and Torres-Aleman, 2008; Gilley et al., 2003; Brunet et al., 1999). Bonni and 

co-workers demonstrated that oxidative stress activates MST1, which in turn 

phosphorylates Foxo3 at ser 207, resulting in the disruption of Foxo3 interaction 

with 14-3-3 proteins (a family of conserved modulator proteins which regulate 

diverse cellular processes through binding to their target proteins and affecting their 

function by several  means (Tzivion et al., 2011)), which leads to Foxo3 nuclear 

accumulation and thereby induces neuronal cell death (Lehtinen et al., 2006).  

Another study suggested that oxidative stress-induced neuronal death involves the 

activation of Foxo3 via recruiting two independently activated pathways. A rapid 

pathway involving  the attenuation of  Akt inhibition of Foxo3 through p38 MAPK-

mediated inhibition of IGF-I stimulation of Akt and a subsequent delayed pathway 

involving the activation of Foxo3 by jun-kinase 2 (JNK2) (Davila and Torres-

Aleman, 2008). 

 

Although in neurons Foxo has been reported to mediate oxidative stress-induced 

apoptosis, Foxo activation in non-neuronal cells has been shown to reduce levels of 
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oxidative stress by upregulating the expression of two potent antioxidant enzymes; 

MnSOD and catalase (Storz, 2011). Another diversion of Foxo3 function from 

apoptosis to stress resistance has been reported in the context of Sirt1-mediated  

deacetylation. In mammalian cells, the silencing information regulator 2 homolog, 

sirtuins (Sirt1) controls cellular responses to stress by deacetylating various proteins 

including Foxos. Brunet et al. reported an increased Foxo3 acetylation in response to 

H2O2-induced oxidative stress accompanied with increased interaction between Sirt1 

and Foxo3. Interestingly, Sirt1 differentially affected Foxo3 function, potentiating 

Foxo3’s ability to induce cell cycle arrest and resistance to oxidative stress but 

attenuating its ability to induce cell death in the presence of stress stimuli (Brunet et 

al., 2004). However, the mechanism by which Foxos switch from apoptotic 

signalling to antioxidant signalling is unclear (Storz, 2011). 

  

In the context of Foxo regulation, our group has previously shown that synaptic 

NMDAR signalling promotes sustained activation of the Akt pathway, leading to 

Foxo1 phosphorylation and nuclear exclusion and eventually the subsequent 

inactivation of Foxo downstream genes (Soriano et al., 2006; Papadia et al., 2008; 

Martel et al., 2009). In addition synaptic activity protects against oxidative stress by 

triggering a number of changes to the thioredoxin-peroxiredoxin antioxidant system. 

These changes include the downregulation of thioredoxin endogenous inhibitor and 

the newly identified Foxo target gene, thioredoxin interacting protein (Txnip). 

Synaptic activity turns off Txnip transcription by promoting PI3K-directed nuclear 

exclusion of Foxos, and the subsequent dissociation from the Txnip promoter 

(Papadia et al., 2008). Whether the effect of synaptic activity on Foxos nuclear 

distribution extends to the other major neuronal Foxo, Foxo3, or whether it induces 

changes to Foxos expression is going to be investigated in this thesis. 
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1.3. Oxidative stress and neurodegeneration 

Ageing was the earliest degenerative condition to be associated with oxidative stress, 

(Harman, 1956; Muller et al., 2007). Most theories of ageing in general and aging of 

the CNS in particular, are centred on the idea that accumulation of ROS coupled with 

diminished antioxidant defences (as a consequence of normal aging process) lead to 

cellular damage involving mitochondrial dysfunction (Harman, 1972; Lin and Beal, 

2006). More recently, this potential association between oxidative stress and ageing 

has been extended to many ageing-related diseases including Parkinson’s disease 

(PD), Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis (ALS) (Bowling 

and Beal, 1995; Lin and Beal, 2006).  

 

AD is the most common ageing-related neurodegenerative disorder, characterized by 

progressive decline in memory and cognitive abilities, which are accompanied by 

neuronal loss in the forebrain.  Evidence of oxidative damage has been seen in AD 

brains as well as transgenic animal models of the disease, in which markers of lipid 

peroxidation, protein and DNA oxidation were increased (Sayre et al., 2008; Vargas 

and Johnson, 2009). The major neuropathological hallmarks of AD are the 

extracellular β-amyloid protein aggregates (Aβ) and the intracellular neurofibrillary 

tangles (NFT) (Simonian and Coyle, 1996; Selkoe, 2001). Oxidative stress is thought 

to contribute to Aβ toxicity and thus antioxidants protect against Aβ-induced 

neurotoxicity (Hensley et al., 1996; Quintanilla et al., 2005). It is also associated with 

the formation of NFTs, whereby oxidative stress triggers tau (the major protein in the 

NFT) phosphorylation leading to the formation of neurofibrillary lesions (Su et al., 

2010).  
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PD is a common neurodegenerative movement disease associated with loss of 

dopaminergic neurons in the substantia nigra and is characterized by movement and 

postural dysfunction (Sayre et al., 2008; Shukla et al., 2011). Postmortem tissues 

from PD patients have shown evidence of mitochondrial   complex I reduced activity 

in the substanita nigra (Dawson and Dawson, 2003). The loss of complex I activity is 

thought to occur due to oxidative damage to certain complex I subunits resulting in 

the disassembly and impairment of the complex (Keeney et al., 2006). Further 

evidence for oxidative stress in PD is obtained from examination of human PD 

brains revealing oxidative damage to DNA and protein within the nigro-striatal 

region (Beal, 2002; Seet et al., 2010; Kikuchi et al., 2002). 

 

Besides being implicated in ageing-related neurological disease, oxidative stress 

plays a key role in the pathogenesis of acute neurological disorders such as ischemic 

stroke (Allen and Bayraktutan, 2009; Cherubini et al., 2005). Oxidative stress 

mediates ischemic injury in part through increasing cerebral vasodilation, blood-

brain barrier permeability and formation of focal lesions (Wei et al., 1996). It also 

has profound damaging cellular effects, leading to cells death and tissue destruction; 

these include nucleic acid modifications, lipid peroxidation and Ca2+ release from 

intracellular stores (Allen and Bayraktutan, 2009).  

 

Although increased oxidative damage has been reported in various human 

neurodegenerative conditions, it is not clear whether oxidative stress is the primary 

pathological mechanism resulting from either overproduction of ROS or a defect in 

cellular antioxidant defences or both, or whether it is a secondary manifestation of 

neurodegenerative process triggered by mitochondrial dysfunction or excitoxicity. 

(Sayre et al., 2008; Vargas and Johnson, 2009). In addition to oxidative stress, 

neurodegenerative conditions involve a number of neuron-damaging events  
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including inflammation, excitoxicity, mitochondrial impairment and calcium 

dysfunction (Andersen, 2004; Wang and Michaelis, 2010). However, the 

interconnection between these events is not necessarily a cascade but they may 

constitute a vicious cycle of which oxidative stress is a major component.  

Regardless of whether oxidative stress is primary or secondary event, it has become 

evident that it is involved in at least the exacerbation of cellular injury that leads to 

neuropathology (Ischiropoulos and Beckman, 2003; Andersen, 2004). Therefore, 

gaining a better insight of the regulation of intrinsic cellular antioxidant defences can 

offer therapeutic strategies to alleviate the burden of oxidative stress or delay the 

progression of neurodegenerative conditions.  

 

1.4. Cellular antioxidant defences 

Cells are equipped with a wide range of endogenous antioxidant defence systems to 

cope with the damaging effects of ROS. These include enzymatic and non-

enzymatic antioxidants that control the levels of ROS. The CNS contains multiple 

antioxidant defences such as the glutathione (GSH) system, 

thioredoxin/peroxiredoxin, and ascorbate.    

 

1.4.1. Glutathione system 

The tripeptide glutathione (GSH; γ-L-glutamyl-L-cysteinylglycine) is the most 

abundant non-protein thiol in mammalian cells, consisting of glutamate, cysteine and 

glycine. Within cells GSH is synthesized in consecutive ATP-requiring reactions of 

two enzymes. The initial reaction is rate limiting and catalysed by glutamate-cysteine 

ligase (GCL), a heterodimeric enzyme consisting of a catalytic subunit (GCLC) and 

a modifier subunit (GCLM), generating the dipeptide γ-glutamyl cysteine; the second 

one is the addition of glycine to the dipeptide by GSH synthetase (Fig. 1. 4) (Meister 

and Anderson, 1983). 
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The importance of the glutathione system for the detoxification of ROS in brain cells 

is becoming more evident (Meister and Anderson, 1983; Cooper and Kristal, 1997; 

Fernandez-Fernandez et al., 2012). Glutathione deficiency induced by the application 

of the GCL inhibitor BSO was shown to enhance the toxic effects of ROS generating 

insults such as ischemia (Mizui et al., 1992) and to induce mitochondrial damage in 

newborn rats brains (Jain et al., 1991).  Furthermore, significant loss of GSH has 

been reported in human brains from patients with AD (Gu et al., 1998), PD (Sofic et 

al., 1992), and schizophrenia (Do et al., 2000), as well as in rat models for 

Huntington’s disease (Cruz-Aguado et al., 2000).  

 

The detoxification of ROS by GSH is achieved either non-enzymatically through the 

direct reaction with radicals such as superoxide or hydroxyl (Saez et al., 1990; 

Winterbourn and Metodiewa, 1994) or through its role as an electron donor in the 

enzymatic reduction of peroxides catalysed by Glutathione peroxidases  (GPx) 

(Chance et al., 1979). GPx are selenium-dependent enzymes that play a major role in 

disposing of H2O2 through catalysing the reduction of H2O2 to water utilizing 

reduced GSH as an electron donor. During the GPx reaction, GSH is oxidized to 

GSSG then recycled back to GSH in an NADPH-dependent reaction catalyzed by 

glutathione reductase (GSR) (Fig. 1.3) (Kosower and Kosower, 1978; Reed, 1986).  

 

In addition to H2O2, glutathione peroxidases catalyse GSH-dependent reduction of 

fatty acid hydroperoxides to alcohol (Reiter, 1995; Gandhi and Abramov, 2012). At 

least five GPx isozymes have been identified in mammalian tissues; with GPx1 being 

the most abundant form (de Haan et al., 1998). The importance of GPx1 in protecting 

against oxidative stress is highlighted by the increased neuronal susceptibility to 

oxidative stress-induced death in GPx1 KO cells/animals challenged with H2O2 or 

paraquat (Haan et al., 1998; Taylor et al., 2005). 
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Whilst GSH has been found, as seen by histochemical and immunohistochemical 

techniques, to be present in neurons and glia (Dringen, 2000), the efficiency of the 

GSH-dependent peroxide detoxification appears to be lower in neurons than in 

astrocytes (Dringen et al., 1999a). This was attributed, at least partially, to the GSH 

concentration being half of that found in astrocytes (Sagara et al., 1993; Makar et al., 

1994) as a result of significantly lower protein levels and enzymatic activity of 

neuronal GCL in comparison with astrocytes (Makar et al., 1994). Consequently, 

cultured neurons are more vulnerable to damaging compounds such as H2O2 than 

cultured astrocytes (Dringen et al., 1999b) while astrocytic-GSH synthesis protects 

neurons from oxidative stress (Shih et al., 2003).   

  

Neurons rely on astrocytes for the provision of the necessary precursors for GSH 

synthesis (Dringen, 2000; Vargas and Johnson, 2009). GSH is released from 

astrocytes into the extracellular space via the multidrug-resistance-associated protein 

1 (MRP1) (Dringen and Hirrlinger, 2003) and subsequently hydrolysed to its 

precursors; first its broken down by γ- glutamyl transpeptidase to the dipeptide 

cysteinyl-glycine (Cys-Gly) (Dringen et al., 1999b), which can then be hydrolysed 

by aminopeptidase N to release cysteine and glycine (Dringen et al., 2001). The 

availability of cysteine, which is extremely unstable extracellulary and rapidly auto-

oxidized to cystine, is the rate-limiting factor in glutathione synthesis (Chen and 

Swanson, 2003; Vargas and Johnson, 2009). Neurons reportedly utilize cysteine but 

not cystine for GSH synthesis, while glia can utilize both (Kranich et al., 1996; 

Sagara et al., 1993). The cystine/glutamate exchange transporter (xCT) imports 

cystine into the cells in exchange with glutamate (Bannai, 1986) and is localized in 

both neurons and astrocytes of the cerebral cortex (Shih et al., 2006). However, xCT 

expression and activity was shown to be higher in astrocytes compared to neurons 

(Jackman et al., 2012). Immature neurons exclusively uptake cystine via xCT 

(Murphy et al., 1990), whereas mature neurons primarily uptake cysteine via the 

excitatory amino acid transporters (EAATs), also known as cysteine-permeable Na+-

dependent glutamate transporter (XAG), which are widely expressed by neurons in  
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mature brain (Shanker et al., 2001; Chen and Swanson, 2003). In addition to 

supplying cysteine, astrocytes release glutamine, thus providing all the necessary 

precursors for neuronal GSH synthesis (Fig. 1.4) (Hertz et al., 1999).  

  

 

 

 

 

 

 

 

Figure 1.3. Detoxification of H2O2 by glutathione peroxidases.  
Glutathione peroxidases (GPx) remove H2O2 by coupling its reduction to H2O with 
the oxidation of two molecules of glutathione (GSH) forming glutathione disulfide 
(GSSG) that subsequently can be reduced by glutathione reductase (GR) under the 
consumption of NADPH.  
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Figure 1. 4. Glutathione synthesis in neurons and astrocytes.  
Within cells GSH is synthesized in consecutive ATP-requiring reactions of two 
enzymes GCL (1) and GSH synthetase (2). The intracellular substrates for GSH 
synthesis; glutamate, glycine and cysteine, may be derived from the extracellular 
precursors a, b and cystine (or other precursors for review see (Dringen et al, 1999a 
and1999b)) respectively. Astrocytes have more efficient GSH synthesis system and 
higher GSH content in comparison with neurons. MRP1 transporter proteins mediate 
GSH export from astrocytes. In the extracellular space, GSH is hydrolysed by γ- 
glutamyl transpeptidase (3) to the dipeptide Cys-Gly, which then can be further 
hydrolysed to Cys and Gly by aminopeptidase N (4). Astrocytes import cystine via 
the glutamate/cystine exchange transporter (xCT) for utilization in GSH synthesis. 
Neurons, on the other hand, import cysteine but not cystine via the excitatory amino 
acid transporter (EAAT) and other transporters (refer to section 1.4.1). In addition, 
astrocytes release glutamine, which is used by neurons as a precursor for the 
glutamate, therefore providing all the necessary precursors for GSH synthesis in 
neurons. 
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1.4.2. Thioredoxins and peroxiredoxins 

Thioredoxins (Trxs) are key players in protection against oxidative stress and are 

characterized by a conserved active site (Cys-Gly-Pro-Cys), which forms a disulfide 

bond between its two cysteine residues when reducing oxidized proteins (Patenaude 

et al., 2005). This oxidized form is then reversibly reduced to its active form by the 

action of thioredoxin reductase (TrxR) and NADPH (Fig. 1.5) (Holmgren, 1985).  

 

Trxs exist in several distinct isoforms, which are localized in specific cell 

compartments; cytoplasmic Trx1 and mitochondrial Trx2, in addition to the more 

recently identified microtubule-associated Trx (Trx1-2) (Sadek et al., 2003) and a 

transmembrane isoform (Tmx) (Matsuo et al., 2001). The cytoplasmic (Trx1) and 

mitochondrial (Trx2) isoforms are widely expressed in rat brains, especially in 

regions with high-energy demands (Lippoldt et al., 1995; Rybnikova et al., 2000).  

The expression of these isoforms is subject to modulation by changes in the cellular 

and molecular redox-status, and also by various stress factors.  

  

 Trxs are considered to be crucial antioxidant proteins, due to their capacity to 

quench singlet oxygen and scavenge hydroxyl radicals. Inhibition of Trx has been 

shown to sensitize cells to oxidative stress (Yoshida et al., 2005), while Trx 

overexpression renders the cells more resistant to H2O2-induced cell death (Berggren 

et al., 2001; Bell and Hardingham, 2011). Additionally, Trx overexpressing 

transgenic mice can achieve extended life span and are more resistant to focal brain 

ischemia or kainite-mediated excitotoxicity than their wild type littermates 

(Patenaude et al., 2005).  

  

Besides its antioxidant potentials, Trx is involved in various redox-regulated 

signalling events and plays a role in the control of many physiological processes 
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such as apoptosis, cell growth and differentiation. For instance, several transcription 

factors are targets for regulation by Trx these include; AP-1, P53 and nuclear factor 

kappa-B (NFĸB). It is also reported to act as potent survival factor through an 

inhibitory binding to the apoptosis signal-regulating kinase-1 (ASK1) (Nordberg and 

Arner, 2001; Powis and Montfort, 2001). 

 

Despite its capacity to directly quench singlet oxygen and scavenge hydroxyl 

radicals independently of its redox state (Das and Das, 2000), Trx exerts most of its 

antioxidant properties through its cooperation with the peroxide scavengers 

peroxiredoxins (Prx) (Powis and Montfort, 2001).  

 

Peroxiredoxins are a conserved family of proteins, which catalyse the reduction of 

H2O2 and organic peroxides, using thiol-based reducing equivalents, to water and 

alcohol respectively (Chae et al., 1994). The most predominant class of 

peroxiredoxins possesses two cysteine residues within its catalytic site, a peroxidatic 

residue and a resolving one. Upon the reduction of peroxides, the peroxidatic 

cysteine undergoes oxidation followed by the formation of disulfide bond with the 

resolving cysteine, which is then reduced by thioredoxin to restore the active 

peroxidase (Fig. I.5) (Halliwell, 2006; Bell and Hardingham, 2011). The peroxidatic 

and resolving cysteines are on different molecules and so 2-Cys peroxiredoxins exist 

as functional homodimers. However, Prxs are susceptible to inactivation by H2O2- 

induced hyperoxidation, whereby the peroxidatic cysteine is oxidized to sulfinic 

derivatives (Fig. I.5). Sulfinic derivatives are resistant to reduction by thioredoxin, 

therefore hyperoxidation of Prx catalytic cysteine residue to sulfinic acid (Prx-SO2H) 

was thought to be irreversible. Studies on the fate of the hyperoxidized Prx have 

shown that it can be reduced back to its catalytically active form by the action of two 

enzymes sulfiredoxin (Biteau et al., 2003; Chang et al., 2004) and sestrin 2 (Budanov 

et al., 2004) in an ATP-dependent manner (Fig. 1.5), however, the role of the latter is 

controversial (Essler et al., 2009; Wood et al., 2003).  

  



	
   28	
  

 

Sulfiredoxin (Srxn1) was initially identified by its robust upregulation in response to 

H2O2 and by the reduced H2O2 tolerance when genetically ablated (Biteau et al., 

2003). The Srxn protein family is present in lower and higher eukaryotes, whose 

members sharing a conserved cysteine residue required for the reduction of Prx in 

addition to ATP-hydrolysis, Mg2+ and thiol as a reducing equivalent. Sulfiredoxin 

reduces the overoxidized Prx through catalysing the formation of a sulfinic acid 

phosphoric ester on Prx, which then can be reduced by thioredoxin (Rhee et al., 

2007). Although Srxn prevents bursts of ROS from permanently inactivating Prx, 

Srxn expression, however, is tightly regulated, suggesting that Prx inactivation is 

desired in some circumstances to accommodate for the intracellular messenger 

function of H2O2 (Wood et al., 2003; Biteau et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   29	
  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. The thioredoxin-peroxiredoxin system.  
Schematic illustrating the detoxification of H2O2 by the classical 2-Cys 
peroxiredoxins (Prx-SH) by the oxidation of peroxidatic Cys residue to cysteine 
sulfenic acid (Prx-SOH) and the subsequent formation of disulfide bond between the 
peroxidatic and resolving cysteine residues. This intermolecular disulfide bond is in 
turn reduced by thioredoxin resulting in the conversion of thioredoxin’s 2 cysteine 
active site into a disulfide bond. This oxidized form is then reversibly reduced to its 
active form by the action of thioredoxin reductase (TrxR) and NADPH. Under 
increased oxidative stress, Prx-SOH can sometimes undergo further oxidation by 
H2O2 resulting in the generation of the inactive cysteine sulfinic acid (Prx-SO2H) 
form, which cannot be reduced by thioredoxin. However, hyperoxidized 
peroxiredoxin can be restored back to its catalytically active form by the action of 
two enzymes; sulfiredoxin and sestrin2.  
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1.4.3. Ascorbate 

In addition to GSH, the brain is enriched in several low molecular mass non-

enzymatic antioxidants, especially ascorbate. Ascorbate (vitamin C) is a water-

soluble vitamin, present in human CSF at levels exceeding those in the plasma 

(Spector and Eells, 1984). In the CNS, neurons and glia are able to concentrate 

ascorbate further via the sodium-vitamin C transporter 2  (SVCT2) (Tsukaguchi et 

al., 1999; Rice, 2000). Intracellular ascorbate contributes to numerous functions in 

the CNS, including antioxidant protection, collagen synthesis, formation of myelin 

sheath (Passage et al., 2004), and protection against glutamate toxicity (May, 2012). 

The primary function of the vitamin is scavenging of free radicals to prevent damage 

of macromolecules particularly lipids (Blake et al., 1987). The antioxidant function 

of ascorbate is due to its electron donor properties. Given its low redox potential, 

ascorbate acts as broad-spectrum free radical scavenger (Rice, 2000). Due to its 

antioxidant activity, ascorbate is oxidized to semi-dehydroascorbate and 

dehydroascorbate, which then can be reduced and recycled by GSH-dependent 

reactions (Rose, 1993; Meister, 1994) or NADPH-dependent enzymes including 

thioredoxin reductase (May et al., 1997). GSH can either directly reduce ascorbate or 

act as an electron donor in the enzyme-dependent reduction of ascorbate (May, 

2012). However, at low concentrations and in the presence of metal ions (an event 

which occures during brain damage), ascorbate can be a strong prooxidant, 

stimulating the hydroxyl radical generation and accelerating lipid peroxidation 

(Halliwell and Gutteridge, 1990). However, in vivo studies highlight the importance 

of ascorbate for the CNS and for perinatal survival. For instance, mice lacking 

SVCT2 die within the first day of birth with cerebral haemorrhage and respiratory 

failure (Sotiriou et al., 2002). Moreover, supplements with dehydroascorbate, the 

oxidized and blood-brain barrier transportable form of vitamin C, markedly 

decreased infarct size, mortality and neurological deficits in mouse models of stroke 

(Huang et al., 2001). 
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1.5. The Nrf2/ARE control of antioxidant defences  

Exposure of mammalian cells to elevated levels of ROS, causes damage to 

macromolecules, and consequently leads to various pathological conditions such as 

cancer and neurodegenerative diseases. Higher animals have developed adaptive, 

dynamic defence programs to protect against oxidative stress; central among them 

are the phase II detoxification proteins (involved in the detoxification of xenobiotics) 

and antioxidant enzymes (Ishii et al., 2002). Biochemical analysis of the promoter 

region of phase II genes revealed a central role for the regulatory DNA sequence 

element referred to as the antioxidant response element (ARE) (Rushmore et al., 

1991). Studies conducted in many laboratories strongly suggest the intimate 

involvement of the Nrf2 protein in ARE-driven gene expression (Zhang, 2006; 

Nguyen et al., 2000; Itoh et al., 1997).   

 

1.5.1. The antioxidant response element (ARE) 

The ARE is a cis-acting regulatory element, which was originally identified in the 

promoters of rodent genes coding for two important antioxidant enzymes. Initially it 

was identified within a 41-bp section from the 5′ upstream region of the rat 

glutathione S-transferase A2 subunit (Gsta2) (Rushmore and Pickett, 1990) and 

shortly after it was discovered in the promoter of mouse NADPH: quinone 

oxidoreductase 1 (Nqo1) (Favreau and Pickett, 1991). This enhancer sequence was 

designated the ARE, due to its response to phenolic antioxidants and metabolizable 

planar aromatic compounds such as tert-butylhydroquinone (tBHQ) and β-

naphthoflavone respectively and was later found to respond to reactive oxygen 

species including H2O2 (Rushmore et al., 1991). The ARE consensus sequence, 

determined through deletion and mutational analysis studies is defined as 5′- 
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gagTcACaGTgAGtCggCAaaatt-3′ (with the essential nucleotides shown in capitals) 

(Nioi et al., 2003).   

Some AREs harbour two or more 12-O-tetradecanoylphorbol-13-acetate (TPA) -

response elements (TRE) within their core sequences that are recognized by 

members of the activator protein-1 (AP-1) family of transcription factors (Xie et al., 

1995; Prestera et al., 1995). The AP-1 transcription factor belongs to the bZip class 

of transcription factor, and is formed by a dimeric association between the Jun and 

Fos family of proteins or other proteins including activation transcription factor- 4 

(ATF4) (Hai and Curran, 1991). Because of the resemblance between the AP-1 

binding sequence and the ARE, AP-1 was initially believed to play a role in the ARE 

activation. However, despite this resemblance, studies have indicated that the 

transcription factors that activate the ARE sequences are quite distinct from those 

that activate the TRE (Nguyen et al., 1994; Lee and Johnson, 2004). More recently, 

data obtained from in vivo and in vitro studies has demonstrated a crucial role for the 

Nrf2 transcription factor in regulating ARE-dependent transcription (Itoh et al., 

1997; Chanas et al., 2002; Lee et al., 2003).  

 

1.5.2. The Nrf2 protein 

Nrf2 was initially identified during attempts to screen for factors that can interact 

with the nuclear factor erythroid-2 (NF-E2), which regulates globin gene expression 

in erythroid cells (Moi et al., 1994). Unlike NF-E2, which is solely expressed in 

developing erythroid cells (Igarashi et al., 1994), Nrf2 is present in a wide number of 

tissues, particularly those that are exposed to the external environment, including 

lung and skin and those involved in the detoxification processes such as kidney and 

liver (Motohashi et al., 2002). Nrf2 belongs to the CNC (“cap and collar”) subset of 

the basic lucine zipper (bZip) family of transcription factors (Moi et al., 1994). This 

family of transcription factors also includes Nrf1and Nrf3.  
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Nrf2, like the rest of the bZip proteins, functions as a heterodimeric transcription 

factor by pairing with other members of the family including small-Mafs (Itoh et al.,  

1997) and AP-1 (Venugopal and Jaiswal, 1998). While, Nrf2 binds the ARE with 

high affinity and specificity upon heterodimerization with small-Maf proteins (Itoh et 

al., 1997), overexpression of Maf proteins, which lack intrinsic transactivation 

activity (Motohashi et al., 2002), serves to suppress Nrf2-mediated ARE activation 

(Nguyen et al., 2000). One plausible explanation for this observation is that Maf 

proteins are capable of binding DNA as homodimers thereby restricting Nrf2 access 

to the ARE promoter (Dhakshinamoorthy and Jaiswal, 2000). 

In addition to small-Mafs, other members of the bZip family have also been reported 

to form heterodimers with Nrf2 serving to modulate its transcriptional activity. Jun 

and Fos have been shown to interact with Nrf2 and differentially regulate the 

transcriptional activity of Nrf2. Co-expression of Nrf2 and Jun was reported to 

activate ARE-mediated transcription in human hepatoma cells (Venugopal and 

Jaiswal, 1998), whereas co-expression of Nrf2 and Fos had the opposite effect on 

ARE activity (Venugopal and Jaiswal, 1996). 

A cross-species comparison of Nrf2 amino acid sequence enabled the identification 

of six well-conserved domains (Itoh et al., 1995), termed Nrf2-ECH homology (Neh) 

domains (Itoh et al., 1997) (Fig. 1.6). The Neh1 (residues 427-560) domain is located 

in the C-terminal half of the protein and contains the conserved CNC and bZip 

motifs responsible for DNA binding and dimerization with small-Maf proteins (Itoh 

et al., 1999a). The Neh2 (residues 1-96) is a redox-sensitive degron located in the 

proximal N terminus and contains the interaction points with the E3 ubiquitin ligase 

adaptor Keap1 (Itoh et al., 1999b). Adjacent to Neh2 are the main transactivation 

domains (TADs); Neh4 (residues 111-141) and Neh5 (residues172-201) (Katoh et 

al., 2001). Within the central part of Nrf2 lies the Neh6 (residues 330-380) degron, 

which is responsible for the interaction with the newly identified E3 ubiquitin ligase 

adaptor β-transducin repeat-containing protein (β-TrCP) (Rada et al., 2011). In 

contrast to the other domains, the Neh3 (residues 561-597) located at the C-terminus  
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of Nrf2, has not been well characterized. However, a study suggests that Neh3 may 

act as a transactivation domain (Nioi et al., 2005).  

 

 

 

 

Figure 1. 6. Nrf2 functional domains.  
Schematic representation of the six conserved functional domains in the mouse Nrf2 
protein. Refer to above text for details. 

 

Although growing evidence emphasizes the central role of Nrf2 in the regulation of 

ARE-driven gene expression (Copple et al., 2010). Nrf1 also appears to have an 

overlapping function with Nrf2 in the regulation of ARE. However, Nrf1 is less 

potent than Nrf2 at transactivating ARE-dependent gene expression as demonstrated 

by reporter genes expression driven by ARE-containing sequences from the 

promoters of mouse Nqo1 and Gclm as well as the human PBGD (porphobilinogen 

deaminase), whereby Nrf1 exhibited less transactivation activity in comparison to 

Nrf2 (Zhang et al., 2006). Furthermore, Nrf1- knockout mice embryos die during 

mid gestation as a result of foetal liver abnormalities and subsequent anaemia (Chan 

et al., 1998).  

In contrast to Nrf1 KO mice, Nrf2 is dispensable for normal growth and development 

(Chan et al., 1996), however, Nrf2 KO mice have lower basal and inducible 

expression of phase II enzymes, and display enhanced susceptibility to a variety of 

diseases, including cancer (Fahey et al., 2002), neurodegeneration (Johnson et al., 

2008), and inflammation (Rangasamy et al., 2005). Moreover, aged Nrf2 KO mice 

develop lupus-like autoimmune symptoms (Yoh et al., 2001; Ma et al., 2006) and  
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vacuolar leukoencephalopathy (Hubbs et al., 2007). Contrary to the extensively 

studied homolog Nrf2, our current knowledge on the function and role of Nrf3 in the 

protection against cellular stress is less advanced. Furthermore, Nrf3 null mice 

develop normally and exhibit no obvious phenotype (Derjuga et al., 2004). 

 

1.5.3. Keap1 

 In the cytoplasm, Nrf2 associates with the kelch-like ECH-associated protein 1 

(Keap1) forming a regulatory system, which serves as a sensor of oxidative and 

electrophilic stress and controls the transcriptional activity of Nrf2 (Giudice and 

Montella, 2006) Keap1 is an actin cytoskeleton binding protein homologous to the 

Drosophila Kelch protein.  It consists of three distinctive domains; the BTB domain 

at the N-terminal region involved in the homodimerization of the protein (Zipper and 

Mulcahy, 2002), a cysteine-rich region known as the linker or intervening region 

(IVR) crucial for the activity of Keap1 (Zhang and Hannink, 2003) and a C-terminal 

double glycine (DGR or Kelch) region comprising six conserved Kelch motif repeats 

forming the Nrf2/Keap1 binding site (Fig. 1.7) (Li et al., 2004).  According to 

previous studies, the amino acid sequence of Keap1 is highly conserved among 

human, mouse and rat (Giudice and Montella, 2006). 

Keap1 was initially described as a negative regulator of Nrf2. Under normal 

physiological conditions, Keap1 sequesters Nrf2 in the cytoplasm, preventing it from 

traveling to the nucleus and activating ARE-dependent gene expression. However, 

when cells are exposed to oxidative or electrophilic stimuli Nrf2 evades Keap1-

mediated suppression, translocates to the nucleus, and activates ARE-driven phase II 

detoxifying and antioxidant genes (Zhang, 2006). Studies using functional ARE 

reporter assays, revealed that overexpression of Keap1 in quail fibroblast cells (Itoh 

et al., 1999b), rodent neuronal and glial primary cultures (Soriano et al., 2008a) and 

zebrafish (Kobayashi et al., 2002), reduces Nrf2-mediated transactivation of the 

ARE-reporter gene.   
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Furthermore Keap1 has an inhibitory effect on the Nrf2/ARE signalling pathway not 

only by anchoring Nrf2 in the cytoplasm but also by targeting Nrf2 for ubiquinitation 

and subsequent proteasomal degradation. In unstressed cells, Nrf2 exhibits a short 

half-life of 10-30 mins (Alam et al., 2003; He et al., 2006). The rapid degradation of 

Nrf2 protein under basal conditions has been attributed to constitutive ubiquitin-

proteasomal degradation (Zhang and Hannink, 2003; Cullinan et al., 2004). Keap1 

was shown to mediate Nrf2 ubiquitination and proteosomal degradation, through its 

function as a substrate adaptor for a Cullin-dependent E3 ubiquitin ligase complex 

(Cullinan et al., 2004; Kobayashi et al., 2004; Zhang et al., 2004; Furukawa and 

Xiong, 2005).  

Several models have been proposed for the Nrf2-Keap1 interaction (Fig. 1.8). The 

widely accepted model was first proposed by Dinkova-Kostova et al., in which 

modifications of specific Keap1 cysteine residues by ARE-inducers lead to the 

liberation of Nrf2 (Dinkova-Kostova et al., 2002). Other studies have proposed Nrf2 

phosphorylation as a mechanism for the release of Nrf2 from Keap1-mediated 

repression (Bloom and Jaiswal, 2003; Huang et al., 2002), however, this model is 

debatable. Accumulating evidence from various laboratories, suggests that ARE 

inducers such as tBHQ don’t evoke complete dissociation of Nrf2 from Keap1. 

Conversely, such molecules may actually increase the association of Nrf2 with 

Keap1, probably via disrupting Keap1-mediated degradation. In support of this, Nrf2 

translocation into the nucleus following the application of Nrf2 inducers such 

diethylmaleate (Itoh et al., 2003) or tBHQ, (Kobayashi et al., 2006) was inhibited by 

cycloheximide. This observation was first documented by Itoh et al. (Itoh et al., 

2003) and later by others (Eggler et al., 2005; Zhang, 2006), forming the initial basis 

for the "hinge and latch" or the two-site substrate recognition model. In this model 

Nrf2 is proposed to interact with the Keap1 homodimer via two distinct sites within 

the Neh2 domain; the low-affinity DLG and the high-affinity ETGE motifs (Tong et 

al., 2007).  Under conditions of oxidative/chemical stress, conformational changes 

occur in the Keap1 IVR domain provoking the loss of the DLG motif binding, whilst 

Nrf2 association with Keap1 is still maintained trough the high- 



	
   37	
  

 

affinity ETGE binding motif. Consequently, Nrf2 is no longer positioned in the 

correct orientation to accept ubiquitin and thus Nrf2 proteasomal degradation is 

ceased. As a result, Keap1 becomes saturated with Nrf2 that cannot be degraded 

efficiently, allowing newly synthesized Nrf2 to translocate into the nucleus and 

activate ARE-dependent transcription (McMahon et al., 2006). Of note, a very recent 

study provided evidence suggesting that inhibition of Nrf2 ubiquitination by 

prototypical Nrf2 inducers (sulforaphane and 5,6-dihydrocyclopenta-1,2-dithiole-3-

thione (CPDT)) doesn’t result from Nrf2 release from Keap1, as Nrf2-Keap1 

complex were detected in both the nucleus and  cytoplasm following drug 

application (Li et al., 2012). Finally, an alternative model proposes Cul3 dissociation 

from Keap1 as a mechanism of Nrf2 activation (Rachakonda et al., 2008).  

Additionally, the Cuadrado group recently reported a Keap1- independent Nrf2 

degradation mechanism, in which phosphorylation of the Neh6 domain of Nrf2 by 

glycogen synthase kinase (GSK), leads to ubiquitination via a β-TrCP /Cul1 E3 

ligase complex (Rada et al., 2011). 

In addition to Keap1, other proteins have been implicated in the control of Nrf2 

activity. Wang and Zhang recently reported a novel Nrf2- repressor termed the 

ectodermal neural cortex-1 (ENC1), which belongs to the same family as Keap1 and 

decreases the rate of Nrf2 synthesis (Wang and Zhang, 2009).  Another group 

described the involvement of cancer and Parkinson’s disease associated protein 

DJ1/PARK7 in stabilizing Nrf2 protein thereby conveying protection against 

stressors (Clements et al., 2006). More recently Maruyama et al. has identified 

[KRAB (Krüppel-associated box)-associated protein 1] KAP1 as a novel Nrf2-NT-

interacting protein facilitating Nrf2 transactivation activity (Maruyama et al., 2011). 
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Figure 1. 7. Keap1 functional domains.  
Schematic representation of the three major functional domains in the mouse Keap1 
protein. Refer to above text for details. 

 

 

 

 

 

 

 

 

 

Figure  1. 8. Proposed models of Nrf2 activation.  
Under basal homeostatic conditions, Keap1 anchors Nrf2 in the cytoplasm via two 
binding sites in the Neh2 domain, the high affinity ETGE motif and the low affinity 
DLG motif, and functions as an adaptor protein for the Cul3-based E3 ligase system, 
facilitating the rapid ubiquitination and proteasomal degradation of Nrf2. Two main 
models of Nrf2 activation (in response to oxidative stress or Nrf2 inducers) have 
been proposed; the hinge and latch and the Nrf2 liberation model. In the hinge and 
latch model, oxidative stress or Nrf2 inducers cause conformational changes within 
Keap1 resulting in the detachment of the weakly binding DLG motif (latch) from 
Keap1, whilst the high-affinity ETGE (hinge) is maintained. Consequently, Nrf2 
ubiquitination and the subsequent proteasomal degradation are abolished. Newly 
synthesized Nrf2 translocates into the nucleus, where it transactivates ARE-driven 
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phase II genes. In the liberation model, oxidative stress/Nrf2 activators induce 
chemical modifications in either Keap1 or Nrf2 or both, resulting in the release of 
Nrf2 from the Keap1/Cul3 complex.   

 

1.6. Nrf2 and neurodegeneration 

A growing body of evidence demonstrates the neuroprotective ability of Nrf2 and its 

downstream genes against a variety of insults in both cell culture and animal models 

of neurodegeneration. The presence of Nrf2 has been shown to contribute to 

neuroprotection, or conversely, to increase sensitivity when Nrf2 is lacking. The 

activation of the Nrf2 pathway has been shown to increase neuronal resistance to 

oxidative insults triggered by H2O2 (Li et al., 2002) and glutamate (Murphy et al., 

1991) in neuronal cell lines, as well as in primary cortical cultures (Kraft et al., 

2004).  

 

In recent years, a great deal of research has been focused on understanding the status 

of the Nrf2-ARE pathway in different models of neurodegenerative diseases. Nrf2 

status was mainly inferred from the subcellular distribution of Nrf2 and the 

expression level of ARE-driven genes.  

  

Studies performed on in vitro models of amyotrophic lateral sclerosis (ALS), 

revealed a reduction of Nrf2 mRNA and protein expression in the primary motor 

cortex and in the spinal cord neurons derived from ALS postmortem tissues (Sarlette 

et al., 2008). A similar decrease in mRNA encoding Nrf2 was observed in embryonic 

motor neurons isolated from rat models of ALS (Pehar et al., 2007). On the contrary, 

laser–capture microdissected motor neurons from mouse models of ALS show no 

change in Nrf2 expression or in ARE-driven genes (Ferraiuolo et al., 2007). Despite 

these apparent discrepancies, changes in the expression levels of Nrf2 and its target 

gene heme oxygenase-1 (Hmox1) (Alam et al., 2003) were reported in SOD1 G93A 

mouse model of ALS (Vargas et al., 2005). Hmox1 is an oxidative stress inducible 

cytoprotective enzyme that catalyses the conversion of haem to bilirubin, CO and 
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free iron (Ryter and Choi, 2002). Elevated Hmox1 expression has been reported in 

neurodegenerative diseases including ALS. Increased Nrf2 and Hmox1 expression 

was found in the spinal cord of early- stage symptomatic SOD1 G93A rats, which 

may represent an endogenous neuroprotective response in early stages of the disease 

that could be overwhelmed with the disease progression by other mechanism(s) 

leading to neuronal loss (Vargas et al., 2005). Moreover, pharmacological or genetic 

activation of Nrf2 rescues motor neurons from toxicity mediated by astrocytes 

expressing mutated human SOD1 in vitro and delays onset and increases life span in 

ALS mouse models when over expressed under the control of an astrocyte specific 

promoter (Nagai et al., 2007; Vargas et al., 2006; Vargas et al., 2008). This was one 

of the earliest in vivo studies to demonstrate the beneficial effect of Nrf2 activation in 

astrocytes on neighbouring neurons in chronic neurodegenerative conditions. 

 

In the case of PD, postmortem PD brain tissue analysis revealed an increase in 

HMOX-1 (Schipper, 2004) and NQO1 expression (van Muiswinkel et al., 2004) in 

glial cells and induced nuclear localization of Nrf2 in the substantia nigra, however, 

this response appears to be insufficient to confer neuroprotection against 

degeneration (Ramsey et al., 2007). In vitro Nrf2 activation has been shown to limit 

the extent of neurotoxicity resultant from the exposure to dopamine analogue 6-

hydroxydopamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

(Yamamoto et al., 2007; Jakel et al., 2007; Wruck et al., 2007). In addition Nrf2 KO 

mice display increased MPTP sensitivity, whereas astrocyte-specific Nrf2 

overexpression in a Nrf2-KO background completely reverses MPTP toxicity (Chen 

et al., 2009). Furthermore, activation of Nrf2 in vitro by tBHQ or in vivo via Nrf2-

overexpressing astrocyte grafts, resulted in protection against 6-hydroxydopamine 

(Jakel et al., 2007). 

 

Similar to PD, data obtained from immunohistochemistry experiments performed in 

post-mortem temporal cortex and hippocampus of AD patients showed a significant 

increase in astrocytic HMOX-1 expression compared to the non-demented group 
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(Schipper et al., 2006). In addition to HMOX-1, NQO1 expression and activity was 

reported to be elevated both in neurons and astrocytes from individuals with AD 

(Raina et al., 1999; Wang et al., 2000; Santa-Cruz et al., 2004). In contrast to the 

nuclear localization of Nrf2 in substantia nigra neurons from PD cases, Nrf2 staining 

in hippocampal neurons of AD cases was predominantly cytoplasmic. The aberrant 

distribution of Nrf2 in AD could be due to differential regulation of Nrf2 localization 

in various neuronal subpopulations (Ramsey et al., 2007). Moreover, the expression 

of Nrf2 and its target genes including Nqo1 was reduced in mouse models of AD 

(APP/PS1) upon accumulation of Aβ deposits. However, Nrf2 induction either by 

tBHQ or through adenovirus-mediated overexpression protected cultured neurons 

from Aβ toxicity (Kanninen et al., 2008). 

 

The status of the Nrf2-ARE pathway is less clear in Huntington’s disease (HD). 

However, Nrf2 activation was shown to protect neurons against mitochondrial toxins 

(e.g. 3-nitropropionic acid (3-NP) and malonate), which produce striatal 

degeneration similar to that observed in HD. Nrf2 deficiency in primary neurons 

potentiated 3-NP toxicity and rendered mice more vulnerable to striatal lesions 

caused by administration of 3-NP or malonate (Calkins et al., 2005; Calkins et al., 

2009). Dietary administration of tBHQ or adenoviral overexpression of Nrf2 

attenuated 3-NP-induced striatal lesioning (Shih et al., 2005). In addition, Nrf2-

overexpressing astrocytes grafted into the striatum provided remarkable protection to 

the surrounding neurons against malonate toxicity (Calkins et al., 2009).  

 

Besides its beneficial role in neurodegenerative diseases, Nrf2 activation was 

reported to protect in acute neurodegenerative scenarios such as ischemia and 

intracerebral haemorrhage. Work from the Murphy laboratory has demonstrated the 

neuroprotective effect of Nrf2 activation in ischemic injury, whereby intracerebral or 

intraperitoneal tBHQ administration, significantly reduced cortical damage and 

sensorimotor deficit at 24 h and up to 1 month after ischemic-reperfusion in rats. In 

contrast, loss of Nrf2 function exacerbated cortical damage after permanent ischemia 
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and abolished the protective effect of tBHQ (Shih et al., 2005). In line with this, 

systemic administration of the Nrf2 inducer sulforaphane has been shown to decrease 

cerebral infarct volume following focal ischemia (Zhao et al., 2006) and 

sulforaphane treatments significantly reduced neurologic deficit produced by 

intracerebral haemorrhage in Nrf2 WT not KO mice (Zhao et al., 2007).  

 

1.7. The locus of Nrf2 activation in the CNS 

The locus of Nrf2 activation in brain tissues is a controversial aspect of the Nrf2 

pathway. A large number of studies have shown that activation of the Nrf2 pathway 

preferentially occurs in astrocytes not neurons.  For instance, in rodent primary 

cerebellar neuronal cultures, basal transcriptional levels and enzymatic activity of the 

ARE-driven antioxidant enzymes NAD(P)H:quinone oxidoreductase (QR) and 

glutathione-S-transferases (GSTs), are remarkably greater in astrocytes than in 

neurons. Moreover, inducibility following the application of tBHQ or hydroquinone 

was only visible in astrocytes (Ahlgren-Beckendorf et al., 1999). Analysis of the 

ARE-driven gene expression in rat brain slices and primary cortical cultures, using a 

heat-stable human placental alkaline phosphatase reporter (hPAP), revealed that 

ARE-mediated gene expression was almost exclusive to the astrocyte subpopulation 

(Murphy et al., 2001). In line with this, a study using primary cortical cultures 

derived from hPAP-ARE transgenic mice reported that the increase in hPAP activity 

post-tBHQ or sulforaphane application was predominantly associated with GFAP-

positive astrocytes as seen by immunofluorescence staining using an antibody 

against hPAP in conjunction with anti-GFAP. They also combined the use of cell 

sorting and gene chip technology in an effort to determine the cell-specific 

contribution to tBHQ-mediated ARE activation and found that the majority of the 

ARE-driven genes up-regulated by tBHQ were observed in astrocyte enriched 

populations (Kraft et al., 2004). 

 

 On the contrary, some studies have documented a functional Nrf2 pathway in 

neurons. Johnson et al. reported an increased histochemical staining for hPAP and 
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NQO1 activity after tBHQ treatment in both glia and neurons in primary cortical 

neuronal cultures derived from transgenic reporter mice for ARE core sequence 

coupled to hPAP (Johnson et al., 2002). They also showed in a separate study, 

cellular staining of ARE-hPAP in motor neuron cell bodies and astrocyte processes 

of 90 day old mice expressing mutant SOD1 (Kraft et al., 2007). In line with this 

notion, a more recent study suggesting that Nrf2 plays a role in the transcriptional 

regulation of excitatory amino acid transporter 3 (EAAT3) in the context of oxidative 

stress, has shown increased EAAT3 expression and GSH levels in neurons of mice 

that have received striatal injections of either tBHQ or in neurons overexpressing 

Nrf2 under a neuron-specific promoter (Escartin et al., 2011). In addition, treatment 

with sulforaphane was shown to activate the ARE/Nrf2 pathway in hippocampal 

neurons conferring protection against oxygen glucose deprivation (OGD)-induced 

cell death via Nrf2-dependent gene expression (Soane et al., 2010). 

 

 

1.8. The role of astrocytes in neurodegenerative diseases 

Decades of neuropathological studies have been neuron-centric in addressing the 

causes of these disorders, but there is growing evidence pointing towards the 

important role of astrocytes in determining neuronal survival and demise. Until 

recently, the general thinking has been that the main function of astrocytes along 

with other cells of glial lineage is to hold neurons together. However, it is becoming 

clear that astrocytes serve many housekeeping functions, including amino acid 

metabolism, nutrient transport, ion homeostasis and modulation of excitatory 

synaptic transmission (Maragakis and Rothstein, 2006). 

 

 

 



	
   44	
  

Studies performed on human tissue and transgenic models of ALS have provided 

evidence that astrocytic abnormalities and dysfunction precede clinical disease. For 

instance, markers of astrocytosis were detected months prior to the clinical onset in 

the spinal cord of G85R SOD1 mice (Bruijn et al., 1997). Similarly, Howland and 

co-workers reported loss of glutamate transporter EAAT2 (GLT-1) with concomitant 

astrocytosis proceeding motor neuron degeneration and the clinical onset of the 

disease (Howland et al., 2002). However, EAAT2 overexpression in astrocytes of 

mutant SOD1 mouse model increased motor neuron survival and delayed disease 

onset, which indicate that astrocytic EAAT2 influences the timing of disease onset 

and motor neuron survival (Howland et al., 2002; Guo et al., 2003). Mutant SOD1 

expression in neurons or motor neurons was insufficient to lead to neuronal death 

except when neurons were surrounded by mutant SOD1 expressing astrocytes 

(Clement et al., 2003). 

 

 

The association of reactive astrocytes with neuritic plaques was first observed by 

Alois Alzheimer and has been subsequently confirmed to be a morphological 

characteristic of plaque-infested AD (Wisniewski and Wegiel, 1991). While 

activated astrocytes may mediate the cytotoxic effects of Aβ by releasing 

interleukins, cytokines and nitric oxide among other potentially cytotoxic molecules 

(Gitter et al., 1995; Griffin et al., 1998; Hu et al., 1998; Wallace et al., 1997), 

accumulating evidence demonstrates the involvement of astrocytes in the clearance 

of Aβ (DeWitt et al., 1998; Koistinaho et al., 2004; Matsunaga et al., 2003). 

However, Aβ internalization appears to induce detrimental changes in astrocytes 

including oxidative stress, mitochondrial dysfunction, accumulation of intracellular 

calcium and depletion of glutathione (Abramov et al., 2003; Abramov et al., 2004). 

 

Astrocytes have a dual role in PD, as they can be injurious or protective depending 

on the context. They can confer neuroprotection to dopaminergic neurons either 

through the clearance of extracellular α-synuclein or through the release of 
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antioxidants and trophic factors. α-synuclein is a small protein abundantly available 

in the presynaptic terminals, which has the tendency to form insoluble neurotoxic 

aggregates under various pathological conditions (Rappold and Tieu, 2010). Under 

pathological conditions, astrocytes appear to induce neurodegeneration by releasing 

cytotoxic molecules including the active toxic cation MPP+, a product of MPTP 

metabolism by MAO-B, which is readily taken up by neighbouring dopaminergic 

neurons and terminals where it induces neurotoxicity. In addition, proinflammatory 

cytokines are also released from astrocytes as a result of α-synuclein accumulation in 

astrocytes beyond their degradation capacity (Rappold and Tieu, 2010). 

 

1.9. The NMDAR control of pro-death and pro-survival pathways 

1.9.1. NMDA receptors in the CNS 

NMDARs are cation channels gated by glutamate, the predominant excitatory 

neurotransmitter in the CNS, and  are permeable to Na+, K+ and Ca2+ ions. They play 

a key role in synaptic transmission and in mediating synaptic plasticity , learning and 

memory. Besides NMDARs, α-amino-3-hydroxy 5-methyl 4-isoxazolepropionic acid 

receptors (AMPARs) and Kainate receptors are also glutamate gated ion channels 

that act in concert with NMDARs to mediate glutamatergic neurotransmission. 

However, most of the neurochemical foundations of perception, learning and 

memory are set by synaptic activity via the NMDARs (Bliss and Collingridge, 1993; 

Aamodt and Constantine-Paton, 1999). NMDARs are also present on 

oligodendrocytes (Karadottir et al., 2005) and astrocytes (Schipke et al., 2001), as 

well as non-neural cells such as osteoclasts (Szczesniak et al., 2005) and 

lymphocytes (Tuneva et al., 2003), however,  NMDARs function in these types of 

cells is not well-defined. 

 

The majority of mammalian NMDARs in the CNS occur as hetero-tetramers and are 

typically comprised of a pair of glycine-binding GluN1 subunits and another pair of 

glutamate-binding GluN2 subunit.  Four types of GluN2 subunits (GluN2A-D) in 
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addition to 2 types of GluN3 subunits (GluN3A and GluN3B) provide NMDARs 

variety (Kohr, 2006).  Studies of NMDAR subunit expression in the developing rat 

CNS revealed that GluN2B and GluN2D subunits occur prenatally, whereas GluN2A 

and GluN2C start to appear near birth. GluN1 however, is ubiquitously expressed 

throughout development and in the adult brain (Monyer et al., 1994).  

The NMDAR receptor display several characteristic features that distinguish it from 

other types of glutamate receptors, those include; relatively high permeability to Ca2+ 

compared to AMPAR and Kainate receptors, voltage dependent block by 

extracellular Mg2+ and modulation by glycine (Masu et al., 1993; Cull-Candy et al., 

2001). Normally, at negative resting membrane potential, the NMDAR pore is 

directly blocked by Mg2+   ions preventing other ions (Ca2+, Na+ and K+) from passing 

through freely. This block is lifted following membrane depolarization, which occurs 

when presynaptic glutamate release causes Na+  influx through AMPAR in the 

postsynaptic cell. Thus, allowing the NMDARs to function as “coincidence 

detectors”, whereby glutamate release must synchronize with membrane 

depolarization before the channel will pass current. 

Ca2+  entry through the NMDARs can lead to a range of alterations in neuronal 

function through  regulation of channel oppening, neurotransmitter release and also 

by influencing gene expression (Burgoyne, 2007). Excessive Ca2+   influx  can trigger 

cell death. The differing outcomes of NMDAR-mediated Ca2+   influx are  dependent 

on the magnitude of the stimulus, be it intensity or duration, and the location of the 

receptors (synaptic vs. extrasynaptic) (Soriano and Hardingham, 2007). 

At the synapse NMDAR are organized in multiprotein signalling complexes 

embedded within a dense protein matrix forming a distinct specialization known as 

the postsynaptic density (PSD) (Sheng, 2001). NMDARs are anchored in the PSD 

through interaction between cytoplasmic C-termini of GluN2 subunits, and the PDZ  

 

domains of PSD-95 (Collins et al., 2006). PSD-95, is a prominent organizing protein 

in the PSD and a member of the membrane-associated guanylate kinase (MAGUK) 
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superfamily of proteins, which couples NMDARs to intracellular proteins and 

signaling enzymes such as nitric oxide synthase (nNOS), protein phosphatase 2b 

(calcineurin) and calmodulin dependent protein kinase II (CamKII) (Waxman and 

Lynch, 2005). As such, PSD facilitates NMDAR activation and the subsequent signal 

transduction. 

 

1.9.2. Death and survival signalling from the NMDAR 

Excessive NMDAR activity can contribute to neuronal loss in acute events such as 

traumatic brain injury and seizure, as well as certain chronic neurodegenerative 

diseases such as AD. However, physiological levels of synaptic NMDAR activation 

can promote neuroprotection (Papadia and Hardingham, 2007).  Thus, responses to 

NMDAR activity follow a bell shaped curve: both excessive and poor activity can be 

harmful (Lipton and Nakanishi, 1999). Moreover, the nature of response to an 

episode of NMDAR activity is influenced by the stimulus intensity, NMDAR 

location and subunit composition (Martel et al., 2012). Recent studies show that 

stimulation of synaptic NMDAR can promote neuroprotection, whereas activation of 

extrasynaptic NMDAR promotes cell death (Hardingham and Bading, 2010). 

 

1.9.2.1. Pro-survival signalling from the NMDAR 

Neuronal health is more complex than that offered by the dichotomous description of 

neurons as either dead or alive. According to the dynamic equilibrium theory for 

neuronal health, neurons exist in a spectrum of states ranging between protected and 

fully functional to vulnerable and dysfunctional. A neuron’s status within this 

spectrum is constantly influenced by internal and external stimuli (Isacson, 1993),  

 

 

but is known to be shifted towards health and robustness by NMDAR-mediated 

synaptic activity (Papadia and Hardingham, 2007).  
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The notion that activity can be survival promoting stemmed from previous studies in 

which activity blockade caused death in the disconnected neurons (Mennerick and 

Zorumski, 2000). Analysis of brain sections from rat pups treated with NMDAR 

antagonist (MK-801) during the first postnatal week, displayed increased 

morphological changes associated with cell death within the dentate gyrus (Gould et 

al., 1994). In the developing brain, elimination of NMDAR activity triggers 

widespread apoptotic neurodegeneration in the rat forebrain (Ikonomidou et al., 

1999), increases the rate of apoptotic elimination of granule neurons (Monti and 

Contestabile, 2000), causes a large increase in cell death in the somatosensory 

thalamus (Adams et al., 2004) and also enhances trauma-induced injury (Pohl et al., 

1999). In addition, NMDAR blockade exacerbates neuronal loss in mature brain 

already undergoing neurodegeneration or subjected to traumatic injury (Ikonomidou 

et al., 2000), and prevents the survival of newly generated neurons in the adult 

dentate gyrus (Tashiro et al., 2006). 

 

The activity-dependent neuroprotection has been recapitulated in vitro in neuronal 

cultures where enhanced synaptic NMDAR activity has been shown to render 

neurons more resistant to various death-inducing stimulus including trophic 

deprivation, retinoic acid (Papadia et al., 2005) and H2O2 (Papadia et al., 2008). Also, 

in mouse cortical cultures, the protective effect of oxygen glucose deprivation 

(OGD) preconditioning, in which transient exposure to non-lethal episode of OGD 

increases tolerance to a subsequent more lethal episode of OGD, was shown to be 

sensitive to NMDAR antagonists (Grabb and Choi, 1999). The protective role of 

endogenous NMDAR activity in injured brain is one of the contributing factors to the 

failure of clinical trials for stroke utilizing NMDAR antagonists (Ikonomidou and 

Turski, 2002). 
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1.9.2.1.1. Anti-apoptotic effect of synaptic NMDAR signalling 

Physiological levels of synaptic NMDAR activation maintain neuronal health, 

longevity and boosts endogenous antioxidant defences (Papadia et al., 2008). 

Synaptic NMDAR activity confers neuroprotection via triggering posttranslational 

modification of existing proteins or changes in gene expression. The PI3K/Akt 

pathway is a key signalling pathway through which synaptic NMDAR activity exerts 

a neuroprotective effect. PI3K/Akt activity causes inhibitory phosphorylation of the 

pro-apoptotic Bcl-2 family member BAD (Brunet et al., 2001), as well as glycogen 

synthase kinase-3 beta (GSK3β); a kinase closely involved in neuronal apoptosis 

(Hetman et al., 2000) and implicated in various neurodegenerative diseases (Kaytor 

and Orr, 2002). In addition, Akt controls the activity of two pro-death transcription 

factors; p53 and FOXO.  P53 has the ability to induce the transcription of various 

pro-death genes, including those encoding Bax, Noxa and Puma (Amaral et al., 

2010). Activated Akt was shown to promote survival in hippocampal neurons by 

inhibiting the activity of p53 (Yamaguchi et al., 2001).  The underlying mechanism, 

however, doesn’t appear to involve direct phosphorylation of p53 by Akt, but rather 

the phosphorylation /activation of the p53 negative regulator Mdm2 (murine double 

minute-2) by Akt (Ogawara et al., 2002). On the other hand, Akt directly 

phosphorylates Foxos, triggering their nuclear export and inhibiting their ability to 

induce the expression of pro-death genes (Leveille et al., 2010). Finally, stimulation 

of synaptic NMDAR activity promotes the nuclear exclusion of both Foxo and 

GSK3β in a PI3K-dependent fashion (Soriano et al., 2006).  

 

Besides pro-death gene suppression, synaptic activity also promotes neuroprotection 

by inducing the expression of survival genes. One important mediator of activity-

dependent gene expression is the transcription factor cyclic-AMP response element 

binding protein (CREB), which binds to the cAMP response element and 

transactivates a number of pro-survival genes. CREB has a well-documented role in 

neurosurvival. For instance, CREB-dependent gene expression was found to be 
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required for the long-lasting activity-dependent neuroprotection against apoptotic 

(Papadia et al., 2005) and excitotoxic insults (Lee et al., 2005). More recently, 

studies by Zhang et al. identified a nuclear calcium-regulated genomic program that 

contribute to synaptic NMDAR-mediated acquired neuroprotection. This program 

consists of about dozen genes, termed activity-regulated inhibitors of death (AID), 

which have been shown to confer neuroprotection both in cell culture and in animal 

models of neurodegeneration (Zhang et al., 2009). Some of these genes, which 

include B-cell translocation gene 2 (Btg2) and B-cell lymphoma 6 (Bcl6), appear to 

be CREB targets and may provide neuroprotection through enhancing mitochondrial 

resistance to cellular stress or toxic insults. Brain derived neurotrophic factor 

(BDNF), which has a well-characterized neuroprotective effect, is another target for 

synaptic NMDAR and nuclear Ca2+-CREB signalling (Hardingham and Bading, 

2010). 
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Figure 1.9. Anti-apoptotic effect of synaptic NMDAR activity.  
Synaptic NMDAR signalling supresses the intrinsic apoptosis cascade at multiple 
levels. PI3K/Akt pathway is a key signalling pathway through which synaptic 
NMDAR activity inactivates pro-death transcription factors such as Foxos and p53 
and results in the subsequent suppression of their target genes expression. Activation 
of PI3K/Akt also leads to the inhibitory phosphorylation of Bad and GSK3β. 
Synaptic activity also supresses the extrinsic pathway via the downregulation of 
Foxo-mediated FasL expression. In addition, synaptic activity induces the expression 
of pro-survival genes (as shown) via a number of transcription factors including 
CREB (for review see (Hardingham and Bading, 2010).  
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1.9.2.1.2. Antioxidant effect of synaptic NMDAR signalling 

 In addition to their well-established anti-apoptotic effects, physiological patterns of 

synaptic NMDAR activity can also confer protection against oxidative insults by 

enhancing neuronal intrinsic antioxidant defences. In an early study conducted in our 

laboratory, we showed that complete NMDAR blockade increases neuronal 

sensitivity to H2O2-indcued cell death, while enhancing synaptic activity protects 

against it (Papadia et al., 2008). Moreover, suppression of physiological NMDAR 

activity promotes neuronal apoptosis associated with oxidative damage in P6 mice 

cortex (Papadia et al., 2008). Investigation into the molecular basis for this protection 

revealed a mechanism that at least in part, involves changes within the thioredoxin-

peroxiredoxin antioxidant system. Synaptic activity prevented the oxidative insult-

induced overoxidation of Prx (an antioxidant enzyme described earlier in section 

1.4.2) by enhancing the expression of the two genes, Srxn1 and Sesn2, who’s 

products are involved in resorting the hyperoxidized Prx to its active form (Papadia 

et al., 2008). The activity-dependent up-regulation of Srxn1 was mediated mainly by 

two AP-1 sites (Papadia et al., 2008; Soriano et al., 2008). Interestingly, synaptic 

activity not only boosts the expression of these genes but also suppresses the 

expression of the thioredoxin inhibitor Txnip, a Foxo target gene, through promoting 

the nuclear export of Foxo1 in a PI3K-dependent manner (Soriano et al., 2006; 

Papadia et al., 2008). However, whether synaptic activity induces long-term changes 

to Foxo1 activity beyond its acute nuclear exclusion is unknown and is investigated 

in this thesis.  

 

As well as boosting the antioxidant defences centred on the thioredoxin-

peroxiredoxin system, synaptic activity also enhances the activity of the 

transcriptional co-activator peroxisome proliferator-activated receptor-γ coactivator 

1α (PGC-1 α), which has been implicated in many cellular processes including 

energy homeostasis, β-oxidation of fatty acids, as well as glucose and ROS 
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metabolism (St-Pierre et al., 2006). PGC-1α supresses ROS via mediating the 

induction of ROS-detoxifying enzymes such as SOD1, SOD2, catalase and GPx1 in 

response to oxidative stress (St.-Pierre et al., 2006). PGC-1α overexpression protects 

neurons from excitotoxic and oxidative stress in a cell autonomous manner, while 

knockdown rendered the neurons more vulnerable to insults. The mechanism by 

which synaptic activity enhances PGC-1α activity, involves triggering the nuclear 

export of the transcriptional co-repressor silencing mediator of retinoic acid and 

thyroid hormone receptors (SMRT), which specifically antagonizes PGC-1 α-

mediated antioxidant responses. Furthermore, synaptic activity boosts PGC-1 α 

transcription in vitro and in vivo and enhances its transcriptional activity in vitro 

(Soriano et al., 2010). Interestingly, PGC-1 α under expression has been associated 

with disease progression in models of HD (Cui et al., 2006; Weydt et al., 2006; 

Soriano et al., 2011), PD (Shin et al., 2011) and AD (Qin et al., 2009), however, 

PGC-1 α overexpression exhibits protective effects in these disease models. 
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Figure 1.10. Antioxidant effect of synaptic NMDAR activity.  
Schematic representation showing the antioxidant effect of synaptic NMDAR 
activity.  Synaptic activity enhances the thioredoxin-peroxiredoxin pathway via 
Txnip suppression and the upregulation of Srxn1 and Sesn2. Synaptic activity also 
enhances the activity of PGC-1 α. 
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1.9.2.2. NMDAR-mediated cell death 

Excitotoxicity is a pathological process in which excessive activation of glutamate 

receptors (particularly NMDARs) results in neuronal death. Excitotoxicity is a major 

cause of neuronal death following acute insults such as hypoxia, ischemia and 

trauma. It is also implicated in the etiology of a number of chronic neurodegenerative 

diseases including AD, PD and ALS (Papadia and Hardingham, 2007). The build up 

of extracellular glutamate during pathological scenarios such as ischemia (Rossi et 

al., 2000; Camacho and Massieu, 2006) induces excessive activation of NMDAR, 

which results in Ca+2-dependent cell death (Arundine and Tymianski, 2004). Strong 

Ca+2 influx through the NMDAR triggers cell death via diverse mechanisms. In 

severe excitotoxicity, simple overload of Ca+2  may mediate fast necrotic cell death. 

However, in many cases, active mechanisms could be involved such as 

mitochondrial dysfunction.  

Excessive uptake of Ca+2  by the mitochondria through the potential-driven uniporter 

causes membrane depolarization and the subsequent reversal of mitochondrial 

ATPase. The reversal of mitochondrial ATPase inhibits ATP production and can 

even cause depletion of cytosolic ATP. This loss of ATP further limits the neuron’s 

ability to maintain ion homeostasis and eventually leads to cell’s demise (Papadia 

and Hardingham, 2007). Furthermore, Ca+2 uptake can trigger apoptosis through the 

release of cytochrome c.  

While it had been generally accepted that Ca+2 influx promotes the generation of 

ROS (Nicholls, 2004), recent studies have made the case that ROS production 

following severe excitotoxic episodes is non-mitochondrial in origin (Nicholls, 

2008). However, this does not rule out a role for oxidative stress in mediating 

NMDAR-dependent cell death, as a recent  study demonstrated that activation of 

NADPH oxidase is the primary source of ROS generation by excessive NMDAR 

activation and therefore blocking this event was neuroprotective (Brennan et al., 

2009). 
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In addition to impairing the mitochondrial function, NMDAR over-activation 

perturbs Ca+2  efflux. In neurons, the plasma membrane Ca+2  ATPase pump (PMCA) 

and the plasma membrane Na+/ Ca+2  exchangers (NCXs) are the two routes through 

which Ca+2 can exit the cell. Excessive NMDAR-mediated Ca+2 influx activates 

calpains, Ca+2-dependent proteases, which cleave a major isoform of the plasma 

membrane Na+/ Ca+2  exchanger (NCX3), impairing its function in cerebellar granule 

neurons (Bano et al., 2005). Moreover, excitotoxic insults suppress PMCA activity 

via mechanisms attributed to both calpains (Pottorf et al., 2006) and caspases 

(Schwab et al., 2002). Striatal enriched tyrosine phosphatase (STEP), is another 

important substrate for NMDAR-mediated calpain cleavage. STEP cleaved from is 

unable to interact with its normal substrates such as p38 mitogen-activated protein 

(MAP). MAP kinase, which is known to contribute to neuronal death in response to 

chronic NMDA or glutamate exposure, is negatively regulated by STEP and 

therefore inhibition of calpain-mediated STEP cleavage is neuroprotective 

(Hardingham and Bading, 2010). 

 

Furthermore, NMDAR-dependent Ca+2   influx stimulates neuronal nitric oxide 

synthase (nNOS) activity, which triggers toxic down stream responses, including 

mitochondrial dysfunction, p38 mitogen activated protein-kinase signalling, and 

activation of the transient receptor potential melastatin (TRPM) channel (Papadia 

and Hardingham, 2007). nNOS is coupled to NMDAR receptors via the post-

synaptic density protein PSD95 and in an excitotoxic context produces nitric oxide 

(NO), which in excess can be toxic both on its own or when it interacts with other 

ROSs such as superoxide resulting in the formation of peroxynitrite (ONOO —) 

(Hardingham, 2009). NO/ONOO— has been shown to cause damage to cellular 

components, inhibit mitochondrial respiratory chain enzymes and promote 

depolarization. In addition, both NO and ONOO— can damage DNA, leading to 

overactivation of  the DNA repair enzyme, poly (ADP ribose) polymerase 1 (PARP-

1). In the CNS, PARP-1 overactivation can promote neuronal death through 

mechanisms involving the depletion of cellular NAD(+) levels and the mitochondrial 
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release of the apoptosis activating factor (AIF) (Kauppinen and Swanson, 2007; 

Andrabi et al., 2008). Moreover, ONOO — activates the cation channel TRPM7, 

which itself passes Ca2+, resulting in a positive feedback loop on nitric oxide activity 

(Aarts et al., 2003).  

 

Activation of the stress-activated protein kinases (SAPKs) such as p38 and c-Jun N-

terminal kinases (JNKs) represents another mechanism for NMDAR-dependent cell 

death. For instance, the activation of p38 leads to caspase-independent cell death in 

both cerebellar granule and cortical neurons (Kawasaki et al., 1997; Cao et al., 2004; 

Soriano et al., 2008b).  JNK activation has been shown to contribute to NMDAR-

dependent cell death in cortical neurons, both in vivo and in vitro (Borsello et al., 

2003). In addition to its role in excitotoxicity, p38 was reported to promote 

neuroprotection through the activation of myocyte enhancer factor 2 (MEF2) 

(Okamoto et al., 2000) and to be activated by neuroprotective synaptic NMDAR 

activity (Soriano et al., 2008b; Soriano et al., 2010) Further studies have revealed 

new components of the excitotoxic cell-death pathway such as Rho, a member of the 

Rho-family of GTPases, which was associated with glutamate-induced p38α- 

dependent excitotoxic neuronal death (Semenova et al., 2007).  

 

Besides the stimulation of SAPKs, Foxo activation has been implicated in NMDAR-

dependent cell death. Unlike synaptic NMDAR activity, which inactivates pro-

apoptotic Foxo, extrasynaptic NMDAR-evoked signals fail to trigger Foxo nuclear 

export and instead increase Foxo nuclear localization, which subsequently 

contributes to NMDAR-dependent neuronal death (Dick and Bading, 2010). 
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Figure 1.11. Pro-death signalling from NMDARs.  
Excessive activation of NMDAR results in Ca+2-dependent cell death via various 
mechanisms including the activation of Foxos, calpains, nNOS, JNK, as well as 
mitochondrial dysfunction (*) (refer to above text). 
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1.10. Aims  

In previous studies, Nrf2 activation was achieved artificially either by astrocyte-

specific over expression of Nrf2 (Shih et.al., 2003; Shih et al., 2005; Nagai et al. 

2007; Vargas et al. 2008; Kanninen et al., 2008), or by treatment with well-

characterized small molecule activators of the pathway such as tBHQ and 

sulforaphane (Shih et al., 2005; Zhao et al., 2006; Zhao et al., 2007; Jakel et al., 

2007; Kanninen et al., 2008), or by transplantation of Nrf2-overexpressing astrocytes 

(Jakel et al., 2007; Calkins et al., 2009). However, the extent to which endogenous 

Nrf2 could respond to intrinsic signals such as mild oxidative stress and subsequently 

mediate a physiologically relevant endogenous neuroprotective response is less clear.  

 

Another issue is the locus of Nrf2 activation in brain tissues, which represent a 

controversial aspect of the Nrf2 pathway. While a large number of studies have 

shown that activation of the Nrf2 pathway preferentially occurs in astrocytes not 

neurons (Ahlgren-Beckendorf et al., 1999; Murphy et al., 2001; Kraft et al., 2004), 

this is controversial (Johnson et al., 2002; Kraft et al., 2007; Escartin et al., 2011). 

These studies whether supporting the astrocyte specific or non-specific activation of 

the ARE-Nrf2 pathway don't, however, establish the locus of endogenous Nrf2 

activity in response to endogenous signals such as oxidative stress. Thus in this thesis 

I wish to investigate (1) the extent to which the endogenous Nrf2 pathway can 

respond to intrinsic signals such as mild oxidative stress by triggering antioxidant 

genes up-regulation, and (2) the locus of endogenous Nrf2 activation in vitro. 

 

In line with the previously reported activity-dependent suppression of Foxo1 

(Papadia et al., 2008; Leveille et al., 2010) I wished to investigate whether synaptic 

NMDAR activity: (1) promotes the nuclear exclusion of the other major neuronal 

Foxo, Foxo3, and (2) influences the expression of Foxo1. 
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The aims of the research presented here are summarized in the points below: 

• To determine whether synaptic activity induces changes to Foxo1 activity 

beyond its acute export from the nucleus. 

• To determine the extent to which the endogenous Nrf2/ARE pathway can 

respond to intrinsic signals such as mild oxidative stress and the locus of its 

activation in our in vitro system of astrocyte containing primary cortical 

cultures. 

• To investigate the mechanism(s) by which mild oxidative stress activates the 

endogenous Nrf2/ARE pathway. 

As will be discussed in the concluding remarks of this thesis, our data provide a 

better insight into the regulation of intrinsic neuroprotective pathways, and therefore 

may point to ways in which they may be mimicked or enhanced for therapeutic 

effect. 
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                                     Chapter 2 

                            Materials and Methods 
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2.1. Neuronal cultures  

Cortical neurons were cultured from embryonic day 17.5 (E17.5) CD1 mice or from 

E21 Sprague Dawley (SD) rat pups. The pregnant mothers and their pups were culled 

in accordance with schedule 1 of the home office guidelines on human killing of 

animals. Mouse pups were decapitated and rat pups were anaesthetized with an 

intraperitoneal injection of pentobarbital (Ceva Sante Animale, La Ballastiere, 

France) before decapitation. To dissect the cortices, the brains were removed and 

placed in plastic dishes containing dissociation medium (81.8 mM Na2SO4, 30mM 

K2SO4, 5.84mM MgCl2, 0.252 mM CaCl2, 1mM HEPES, 0.001% Phenol Red, 20 

mM D-glucose,) (Sigma-Aldrich, Dorset, UK) supplemented with 1mM kyurenic 

acid and 10 mM MgCl2 to prevent excitotoxic neuronal damage via NMDAR during 

the dissection and the enzymatic digestion stage. Micro-dissections were performed 

under a light microscope to isolate the cortices, which then were transferred to 15 ml 

round bottom plastic tubes and incubated with 1-2ml of dissociation media 

containing papain enzyme (10 enzymatic units/ml; Worthington Biochemical 

Corporation, Lakewood, NJ, USA) for 20 minutes at 37°C (waterbath), stirring every 

10 minutes. After that, the papain solution is removed and replaced with a fresh one 

for a second round of 20 minutes incubation. Next the cortices were washed twice 

with pre-warmed dissociation medium after removing the papain solution to wash off 

any membranous or blood-containing tissues. Similarly, the cortices were washed 

twice but this time with pre-warmed growth medium consisting of Neurobasal-A 

medium (Invitrogen, Paisley, UK) supplemented with 1% rat serum (Harlan 

Laboratories), B-27 Supplement (1:50 of 50X stock, Invitrogen), 1mM glutamine, 

and 1:100 antibiotic/antimycotic (Gibco®, Life technologies, Paisley, UK). After the 

repeated washing steps, the cortices were homogenized by rapid trituration in 10 ml 

of pre-warmed growth medium using a 2 ml pipette, whereby repeated rounds of 

filling and emptying the barrel of the pipette facilitate the dissociation into single 

cells. The homogenized cells were then diluted with a Opti-MEM (Invitrogen) 

plating media supplemented with 20 mM D-glucose (Invitrogen) and 1:100 

antibiotic/antimycotic. The cell suspension is then plated out at 0.5ml/well in 24-

wells cell culture plates (Grenier Bio-One, Stonehouse, UK). These plates were pre-
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coated with poly-D-lysine (1.33% w/v in H2O; from BD Biosciences, Oxford, UK) 

and laminin (0.5% w/v) at 37°C for 2 h prior to the cells plating step. The cultures 

were then placed in a humidified 5% CO2 atmosphere at 37°C for 2 h, after which the 

medium was replaced with 1ml growth medium. To obtain astrocytes containing 

cultures (AC), 1 ml of growth medium containing 9.6 µM cytosine β-D-

arabinofuranoside hydrochloride (AraC) (Sigma-Aldrich, Dorset, UK) was added on 

(DIV04 Days in vitro) to prevent glial proliferation. 

 

2.2. Nrf2 and Keap1 KO cultures  

Nrf2 and Keap1 KO mice, originally developed by Prof. M. Yamamoto laboratory 

(University of Tohoku) (Itoh et al., 1997; Wakabayashi et al., 2003), were obtained 

from Prof. John. D. Hayes (University of Dundee). However, Nrf2 KO mice have 

been backcrossed over six generations onto C57BL/6 genetic background (Higgins et 

al., 2009b). An offspring of Nrf2 KO mice was generated through breeding of Nrf2 

KO females and males. Matching C57BL/6 WT animals were used to generate 

parallel WT cultures. Keap1 heterozygote males and females were mated to produce 

WT and KO littermates. The offspring genotypes were verified through multiplex 

PCR analysis of cerebellum genomic DNA using DNA easy blood and tissue kit 

(Qiagen UK, Crawley, UK). The primers used are listed in table M1 and the PCR 

conditions were as follows: 5 minutes at 95°C followed by 34 cycles of 94°C for 30 

seconds, 55°C for 1 minute and 72°C for 1 minute, followed by an extension step at 

72°C for 10 minutes.  

The size of the bands produced by this reaction are distinctive based on the genotype 

of the sample DNA whereby Keap1 WT and KO samples generate bands of 235 and 

420 base pairs (bp) respectively (Fig. 2.1). 
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Table 2.1. Keap1 genotyping PCR primers sequences. 

PCR Primer Sequence  

D123 5’-CGGGATCCCCATGGAAAGGCTTATTGAGTTC-3’ 

2nd Ex 3’ 5’-GAAGTGCATGTAGATATACTCCC-3’ 

Tv Neo 5’-TCAGAGCAGCCGATTGTGTGTTGTGCCCAGTCA-3’ 

 

 

 

 

 

 

 

 

Figure 2.1. Keap1 genotyping PCR 
Example of genotyping products obtained in Keap1 WT, KO, and heterozygotes 
mice. 
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2.3. Stimulations and reagents 

 Prior to performing the experiments, cells were placed into trophically deprived 

medium (TMo) containing 10% MEM (Invitrogen, Paisley, UK) and 90% salt-

glucose-glycine (SGG) medium (114 mM NaCl, 0.219% NaHCO3, 5.292 mM KCl, 

1 mM MgCl2, 2 mM CaCl2, 10 mM HEPES, 1 mM Glycine, 30 mM Glucose, 

0.5 mM sodium pyruvate, 0.1% Phenol Red; osmolarity 325 mosm/l) (Bading et al., 

1993) and allowed to equilibrate for (2-16h) before stimulation. Treatments of 

cultured cells were performed after 8-10 DIV. Reagents were either dissolved in H2O 

or in dimethyl-sulfoxide (DMSO). 

 

2.3.1. Induction of synaptic NMDAR activity in neurons 

Stimulations of cultured neurons were done in most cases after a culturing period of 

8–10 days, during which neurons develop a network of processes, express functional 

NMDA-type and AMPA/kainate-type glutamate receptors, and form synaptic 

contacts. Bursts of action potential firing were induced by treatment of neurons with 

50 µM bicuculline (Tocris bioscience, Bristol, UK), a GABAA receptor inhibitor, and 

250 µM 4-amino pyridine, a K+ channel antagonist, to enhance burst frequency 

(Calbiochem, Merk Millipore, Germany) (Hardingham et al., 2001). 

 

2.3.2. Other stimulations  

Sub-toxic doses of H2O2 (Sigma-Aldrich) were utilized to model oxidative stress in 

vitro. tBHQ (Acros Organics, Fisher’s scientific, Belgium) treatments were used to 

model pharmacological activation of the Nrf2 pathway. 50 µM LY 294002 

(Calbiochem, Merk Millipore, Germany) was used to inhibit the PI3K pathway. 

Inhibition of GSK-3β, was performed using 2 µM CT-99021 (Cayman chemical, 

USA). 
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2.4. Assessment of neuronal cell death 

For cell death quantification, neurons were fixed with 4% paraformaldehyde (PFA) 

and subjected to 4’,6’ diamidino-2-phenylindole (DAPI) (Vector Laboratories, 

California, USA) nuclear staining and cell death was quantified by counting the 

number of pyknotic nuclei as a percentage of the total. Approximately 1500 cells 

were scored across several random fields within 3-4 independent experiments. 

 

2.5. Transfections 

Neurons (on DIV08) or HEK-293 cells were transfected using Lipofectamine 2000 

(Invitrogen). In a 24-wells culture plate, each well is transfected with a total up to 

0.65µg of plasmid DNA (pDNA). The pDNA is then diluted in 33µl of TMo medium 

from the wells and in another tube 2.33µl of Lipofectamine was diluted in the same 

manner. The diluted preparations were then combined and incubated at room 

temperature for 20 minutes. Following the incubation period, 285µl of medium from 

the wells was added to the tube containing the pDNA and Lipofectamine mixture and 

mixed gently. Finally, the medium was removed from each well and replaced with 

333µl transfection mixture, after which the cells were maintained at 37°C in a CO2 

for 2-4 h. Of note, transfections were scaled up as needed, in which reagents, DNA, 

cells and medium were used in proportion to the relative growth surface area. At the 

end of the transfection period, the medium on the cells was replaced with either fresh 

growth medium or TMo to prevent cytotoxicity. Transfection efficiency using this 

protocol is approximately 2-5%, of which >99% of the eGFP-expressing cells are 

NeuN-positive neurons and less than 1% GFAP positive astrocytes.  
 

For astrocyte transfection, the same protocol was employed except that transfections 

are carried out on DIV02 instead of DIV08. The rationale behind the early 

transfection is the fact that quiescent (AraC-treated) glial cells are not amenable to 

transfection, whereas (non-AraC-treated) non-quiescent glial cells appear to be more 

amenable to transfection (Soriano et al., 2008). This observation was based on 

quantifying the eGFP-expressing astrocytes in AC cultures transfected with eGFP 

either on DIV02 or DIV8 and subjected to GFAP and GFP immnunofluorescnce. 
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The percentage of transfected astrocytes was calculated as the number of 

GFP+/GFAP+ cells over the total number of GFAP+ cells, and it was 6.7% and 1.6% 

for transfections carried out on DIV02 and DIV08 respectively. 

 

2.6. Plasmids and reporter assays 

2.6.1. Preparation and digestion of plasmids  

Gift plasmids received on filter paper were soaked in 40 µl nuclease free water and 

placed at 4°C overnight. The following day, transformation was preformed by 

mixing 10-15ng of pDNA with 50 µl of ice-cold JM109 competent cells (Promega, 

Southampton, UK) and incubated on ice for 30 minutes, then the mixture was subject 

to 45 seconds heat shock in 42°C water bath. After brief cooling of the mixture for 

few seconds on ice 1ml of Luria-Bertani (LB) broth media (Sigma-Aldrich) was 

added to each mixture tube and placed in a 37°C shaker for 45 minutes, following 

that the mixture was spread on LB agar plates containing 50 ng/ml of ampicillin and 

incubated overnight at 37°C. The following day, colonies were picked and seeded 

into 50ml of LB supplemented with ampicillin and were incubated at 37 °C for 12-16 

hrs with aggressive shaking. The bacterial cells were then harvested by 

centrifugation at 6000Xg for 15 minutes at 4°C and plasmids were purified using the 

Qiagen Plasmid Midi kit (Qiagen). 

Digestion procedure was carried out on ice by mixing 10-30 ng of pDNA with 5 

units of the desired restriction enzyme and the appropriate buffer supplied with the 

enzyme, then the reaction volume was made up to 25 µl with PCR grade water. The 

mixture then was incubated at 37 °C for 2 hr or overnight. When the digestion was 

complete, few microliters of the resulting product was subjected to electrophoresis 

analysis on 0.8% agaros gel containing Syber Safe DNA gel stain (Invitrogen) and 

then visualized with a U:Genius UV illuminator (Syngene, Cambridge, UK). If the 

DNA fragments were required for subsequent procedures, the DNA bands were 

excised from the gel and DNA was extracted using QIAquick Gel Extraction kit 

(Qiagen). 
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2.6.2. Constructs generation 

Foxo1-Luc construct was created by amplifying 1100bp segment of the rat Foxo1 

upstream promoter region from genomic DNA using Picomaxx DNA Polymerase 

(Agilent Technologies, Cheshire, UK) with the following primes: forward, 5'- atc tcg 

agt ctc taa aca ctc tcc tct gac c -3'; reverse, 5'- atg ata tca act taa ctt cgc tgg gtc ac -3'. 

The resulting PCR product was digested with XhoI and EcoRV (sites within primers 

italicized) and cloned into the corresponding sites upstream of the firefly luciferase 

construct in PGL4.10.  

 

For the construction of Keap1-Luc approximately 890bp of the rat Keap1 upstream 

region was amplified from genomic DNA using PicoMaxx high fidelity PCR system 

(Agilent Technologies) with the following primers: forward 5'- caa ctc gag gcg tga 

cag tcg ctc act ta-3'; revrese, 5'- cgt aga tct tcc acc act agc gat tag gg-3'. The resulting 

PCR product was digested with XhoI and BglII (sites within primers italicized) and 

cloned into the corresponding sites upstream of the firefly luciferase construct in 

PGL4.10. 

 

 

2.6.3. Luciferase reporter assay 

For Foxo1-reporter assay, neurons were transfected on DIV08 with Foxo1-firefly 

luciferase (Foxo1-Luc) or the mutant variants, plus a pTK-renilla (Promega) 

normalization vector at a DNA ratio of 4:1 respectively. Whereas, in the experiments 

aiming to evaluate the responsiveness of Foxo1 promoter to Foxo transcription 

factors, the cells were transfected with either Foxo1-Luc or the mutant variants and 

pTK-renilla along with a vector encoding either Foxo1, Foxo3, or beta-globin 

(control) at the following DNA ratio 2:1:4 for Foxo1-Luc: renilla: effector plasmid. 
 

 

 



	
   69	
  

 

In the experiments aimed at evaluating the effect of synaptic activity on Nrf2-driven 

ARE-Luc activity, neurons were transfected on DIV08 with ARE-Luc along with 

pTK-renilla, and also pcDNA3.1/ V5HisBim Nrf2 or beta-globin (control), plus 

pcDNA3.1/V5HisCmKeap1 or beta-globin (control).  

 

For the Gal4-based reporter assay, astrocytes containing neuronal cultures (AC-

neurons) were transfected using an astrocyte specific transfection protocol 

(previously described in the Transfections section) where the astrocytes are 

transfected with the reporter plasmid Gal4-Luc and pTK-renilla and either of the 

effector plasmids; GBD-Nrf2, GBD-Neh(2-4), GBD-Neh5 or GBD only.  

 

As for the Neh2-Luc reporter system, AC-neuron were transfected using the  

astrocyte transfection protocol, in which astrocytes were transfected with Neh2-Luc 

along with pTK-renilla normalization vector; or transfected with a plasmid encoding 

for the luciferase reporter gene not fused to Neh2  (for this purpose we utilized SV40 

driven luciferase reporter) along with pTK-renilla. The DNA ratio of the plasmids 

transfected into the cells is 4:1 for Neh2-Luc or Luc only: renilla respectively. 

 

Prior to performing the Foxo1-Luc, or ARE-Luc, or Keap1-Luc assays, neurons were 

stimulated with 50µM bicuculline and 250 µM 4-aminopyridine for 24 h after 24 h of 

recovery from transfection. As for the Gal4 and Neh2 luciferases reporter systems, 

stimulations were performed 6 days post transfection whereby the cells were treated 

with either 10 µM tBHQ or (25-75 µM) H2O2 for 8 h prior to carrying out the 

luciferase assay. 

 

Luciferase assays were performed using the Dual-Glo luciferase system kit  

(Promega) and relative light units were measured in a FLuostar OPTIMA 

luminometer (BMG Labtech, Aylesbury, UK). Firefly luciferase activity was 
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routinely normalized to Renilla luciferase activity and the results were obtained from 

at least 4 independent experiments, each carried out in duplicates.  

Table 2.2. List of plasmids used. 

Plasmid name Description Reference 

Foxo1-Luc 1100bp segment of the rat Foxo1 upstream 
promoter region fused to luciferase reporter 
gene (refer to construct generation) 

This study (generated by 
Prof. Giles Hardingham) 

PGL4.10 Luciferase reporter vector Promega 

pFoxo1myc Myc epitope tagged mouse Foxo1   A gift from Dr. Domenico 
Accili (Nakae et al., 2000) 

pGFP-Foxo3a GFP epitope tagged mouse Foxo3 A gift from Dr. Domenico 
Accili     

pTK-RL Thymidine kinase promoter deriven Renilla 
luciferase reporter 

Promega 

Keap1-Luc 890bp of the rat Keap1 upstream region fused 
to luciferase reporter gene (refer to construct 
generation) 

This study (generated by 
myself) 

ARE-Luc Human Hmox1 ARE fused to luciferase 
reporter 

A gift from Dr. Satoshi 
Numazawa (Numazawa et 
al., 2003) 

pcDNA3.1V5HisBi
m Nrf2 

Murine Nrf2 coding sequence A gift from Dr. Michael 
McMahon  

 

(McMahon et al., 2003) 

pcDNA3.1/V5HisC 
mKeap1 

Murine Keap1 coding sequence 

Gal4-Luc Luciferase reporter bearing 4 copies of Gal4-
binding site  

Promega 

GBD-Nrf2 Gal4 DNA binding domain fused to the full 
length Nrf2 

A gift from Prof. Masayuki 
Yamamoto (Katoh et al., 
2001) 

GBD-Neh5 Gal4 DNA binding domain fused to Neh5 
domain (153-227 amino acids) 

GBD-Neh(2-4) Gal4 DNA binding domain fused to both 
Neh2 and Neh4 domains (1-156 amino acids) 

GBD Gal4 DNA binding domain only 

Neh2-Luc Neh2 domain fused to luciferase gene (Neh2-
Luc)  

a gift from Dr. Irina  
Gazaryan (Smirnova et al., 
2011) 
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2.6.4. Site directed mutagenesis 

Foxo1 promoter mutants were generated by Prof. Giles Hardingham using the 

QuikChange II XL site-directed mutagenesis kit (Stratagene), following the 

manufacturer’s instructions. The proximal Foxo site on Foxo1 was mutated to 

GTCGACAA (bold indicates nucleotides changed, underlined sequence indicates 

creation of SalI diagnostic site). The distal IRS-like site on Foxo1 was mutated to 

TCTAGACAAA (bold indicates nucleotides changed, underlined sequence indicates 

creation of XbaI diagnostic site).  

 

For the GBD-Neh5 mutation studies, the reactive cysteine residue 191 (Cys-191) was 

substituted with alanine. To obtain this, QuikChange II XL site-directed mutagenesis 

kit (Stratagene) was used along with the mutagenic primer and its reverse 

complementary sequence containing the mismatches 5′CATTCCCGAATTA 

CAGGCCCT TAATACCGAAAACAAG-3′ (bold indicates nucleotides changed, 

underlined sequence indicates creation of Eco01091 diagnostic site). All mutants 

were verified by performing diagnostic cuts with the indicated restriction enzymes 

and were further confirmed by sequencing (SBS sequencing service, University of 

Edinburgh). 
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2.7. Immunocytochemistry 

Cells grown in 24-well plates were fixed with PFA for 20 minutes at room 

temperature, washed once with 1X phosphate buffer saline (PBS) (Invitrogen) and 

permeabilized with NP40 (Invitrogen) for 5 minutes, and then rinsed twice with 1X 

PBS. Fixed cells were incubated with 0.5 ml of the primary antibody diluted in PBS 

overnight at 4°C with gentle rocking. The next day, the primary antibody is retained 

and the cells were incubated with either fluorophore-conjugated or bioten-conjugated 

secondary antibody/antibodies, away from light for 1 h at room temperature after 

rinsing the cells twice with 1X PBS. Following secondary antibody incubation, cells 

were washed rinsed twice with 1X PBS. In the case of bioten-conjugated secondary 

antibody, an additional incubation with Cy3-stripdavidin-conjugated antibody 

(Jackson immunoResearch Laboratories, Inc., Pennsylvania, USA) diluted at 1:500 

in PBS was carried out for 1 h in the same conditions.  Finally, the cells were rinsed 

twice with 1X PBS and then one drop of DAPI was added after aspirating off the 

PBS and each well was covered with a glass cover slip. Primary antibodies used in 

immunocytochemistry were as follows: rabbit anti- HO1 used at (1:1000) (Stressgen 

Biotechnologies Corporation, British Columbia, Canada), mouse anti-GFAP used at 

(1:400) (Sigma-Aldrich), rabbit anti-GFP used at (1:750) (Invitrogen). Secondary 

antibodies were all used at (1:200) dilution in 1X PBS and were as follows; biotin-SP 

conjugated anti-mouse and Dylight 488-conjugated anti-rabbit (Jackson 

ImmunoResearch Laboratories). Images were obtained using Leica AF6000 LX 

imaging system, with a DFC350 FX monochrome digital camera. Using the 

appropriate filter set, images were initially taken in black and white, and colour was 

applied after image acquisition.  

 

For measuring Hmox1 immunostaining intensity, non-saturating pictures were taken 

on a Leica AF6000 LX imaging system, with a DFC350 FX digital camera at a 

magnification of 20X and fluorescence intensity quantified on Image J. Gray scale 

images were obtained at the following settings; exposure time (751-935ms), gain (5) 

and intensity (4). To ensure consistency, all settings were kept the same for pictures 

taken of other conditions within each experiment. Fluorescence intensity was 

quantified for each cell across 4-5 fields, each field containing 10-18 cells. 

Background intensity was subtracted from each cell’s intensity and then the mean of 
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cells intensities was calculated for each condition and normalized to the control 

condition.  

    

 

2.8. Western blotting and antibodies  

Cells were cultured in 35 mm dishes, and lysed in 110 µl of 1.5 X sample buffer 

consisting of (1.5 MTris pH 6.8; Glycerol 15%; SDS 3%;β-mercaptoethanol 7.5%; 

bromophenol blue 0.0375%). Total cell lysate was then boiled at 100°C for 5 

minutes and the samples were resolved in precast gradient (4–12%) NuPAGE-

Novex- Bis-Tris gels (Invitrogen). Electrophoresis was performed using Xcell 

Surelock system (Invitrogen). 20 µl of each protein sample was loaded per well and 

electrophoresis was carried out using 1 X NuPAGE® MOPS SDS running buffer 

(Invitrogen) at 160V for ~ 1.5 h. When the protein migration was satisfactory, the 

protein samples were then electrophoretically transferred from the gel onto a 

ployvinylidene difluoride (PVDF) membrane (Merck Millipore, Germany) in a 

buffer consisting of (96mM glycine, 12mM Tris and 20% Methanol) at 45 V for ~ 2 

h. Once the transfer is complete, the membrane was then blocked for 1 h at room 

temperature in TBS solution (20mM Tris, 137 mM NaCl and 0.1% Tween 20%) 

supplemented with 5% skimmed dried milk. The membrane was then incubated over 

night at 4°C in TBS+5% milk solution containing the appropriate dilution of the 

primary antibody. The next day, the membrane was rinsed three times for 5 minutes 

in TBS, and placed in a solution consisting of the appropriate horseradish 

peroxidase-conjugated antibody prepared at the desired dilution in TBS+5% milk. 

The membrane was left to incubate in this solution at room temperature for 1 h, after 

which the secondary antibody was removed by rinsing the membrane three times for 

5 minutes in TBS. Proteins were detected by enhanced chemiluminescence, whereby 

the membrane is incubated for 1 minute in LumiGlo reagent and peroxide (Cell 

signaling technology, Massachusetts, USA) and then a Kodak X-Omat film was 

exposed to the membrane. Western blots were analysed by digitally scanning the 

blots, followed by densitometric analysis using (imageJ) software. The densities of 

the bands were normalized to an appropriate loading control, which was obtained by 



	
   74	
  

stripping the membrane of the antibodies using Reblot Plus Strong Stripping 

Solution (Merck Millipore, Germany). The procedure involves incubating the 

membrane for 15 minutes in the stripping solution, followed by three washes with 

TBS, and then re-probing with the desired anti-body following the primary anti-body 

incubation protocol described earlier.  

 

The primary antibodies used were: rabbit anti-FOXO1 (1:1000, Cell signaling 

technology),  mouse anti-Akt (1:500, Cell signaling technology), goat anti- Keap1 

(1:500, Santa Cruz Biotechnology, California, USA ), mouse anti-β-tubulin isotype 

III (1 : 125 000, Sigma-Aldrich), mouse anti-GAL4 (DBD) (1:500, Santa Cruz 

Biotechnology), and rabbit anti-beta actin (1:2000, abcam, Cambridge, UK). FOXO1 

bands were normalized to Akt, Keap1 bands were normalized to β-tubulin and GAL4 

bands were normalized to beta-actin. Horse-radish peroxidase-conjugated secondary 

antibodies used in this analysis are anti-mouse, anti-goat (1:1000, Dako, 

Cambridgeshire, UK), and anti-rabbit (1:2000, Santa Cruz Biotechnology). 

 

2.9. RNA isolation, RT-PCR and Quantitative-PCR 

Total RNA was isolated using High Pure RNA Isolation Kit (Roche, Welwyn 

Garden City,UK) including a DNase-treatment step to degrade genomic DNA and 

samples were eluted in 35-45µl of  the elution buffer provided with the kit. cDNA 

was synthesized from 1-5µg RNA using Transcriptor First Strand cDNA Synthesis 

Kit (Roche). Briefly, the reverse transcription reaction was carried out on ice by 

mixing 7 µl of RNA with 13 µl RT mix containing Anchored-oligo(dT) primer: 

random hexamer primer 1:2 (total 3 µl), 4 µl  Transcriptor Reverse Transcriptase 

Reaction Buffer (5X), 0.5 µl Protector RNase Inhibitor (40 U/ µl), 2 µl 

Deoxynucleotide Mix (1mM each:dATP,dGTP,dTTP, and dCTP), 0.5 µl 

Transcriptor Reverse Transcriptase (20 U/ µl) and 3 µl nuclease free water. In 

parallel, at least one NoRT control was generated per isolation and all samples were 

vortexed and spun down before placing them in a thermal block cycler with a heated 

lid. cDNA synthesis reactions were all carried out at 25°C for 10 minutes for primer 
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annealing, 30 minutes at 55°C for RT reaction, 5 minutes at 85°C for enzyme 

inactivation and then cooled down to 4°C. The resulting cDNA was then diluted to 6 

ng and was used to perform real-time quantitative PCR using FS Universal SYBR 

Green MasterRox (Roche) and the reaction was carried out in an Mx3000P qPCR 

system (Agilent Technologies, Cheshire, UK). In short, 15 µl of the qPCR reaction 

mix was pipetted into each well, containing 1 µl template cDNA, 7.5 µl SYBR Green 

master mix (containing optimized amount of DNA polymerase, dNTP, reaction 

buffer and Rox dye), 0.6 µl forward and reverse primers at a final concentration of 

200 nM and 5.3 µl nuclease free water. In each experiment, technical duplicates were 

used for every sample including NoRT and No-template controls. The cycling 

parameters were as follows: 10 minutes of initial denaturation at 95°C; 40 cycles of 

30 seconds at 95°C, 40 seconds of annealing at 60°C with detection of fluorescence 

and 30 seconds of extension at 72°C; followed by one cycle of 1 minute at 95°C, the 

temperature was ramped from 55°C to 95°C over 30 seconds at 1°C per step with 

continuous fluorescence detection (for dissociation curve analysis to confirm the 

amplification of a single product). The mRNA level of the gene of interest was 

normalized to Gapdh levels and expressed compared to levels in control samples 

using the 2(-ΔΔCt) efficiency corrected method (Livak and Schmittgen, 2001). For 

each set of primers, the amplification efficiencies were measured using a 5-fold 

dilution standard curve and were limited between 1.74 and 2.112. Primers sequences, 

and efficiencies are listed below. 
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Table 2.3. List of qPCR primers used. 

Gene Efficiency 

(%) 

Forward primer (5′-3′) Reverse primer (5′-3′) 

Gapdh 

(Mouse) 

104 GGGTGTGAACCACGAGAAT CCTTCCACAATGCCAAAGTT 

Gapdh 

(Rat) 

71.8 
 

AGAAGGCTGGGGCTCACC 

 

AGTTGGTGGTGCAGGATGC 

xCT 

(Mouse) 

74 ATACTCCAGAACACGGGCAG AGTTCCACCCAGACTCGAAC 

Srxn1 

(Mouse) 

102 GACGTCCTCTGGATCAAAG GCAGGAATGGTCTCTCTCTG 

Hmox1 

(Mouse) 

112 AGCACAGGGTGACAGAAGAG GGAGCGGTGTCTGGGATG 

Foxo1 

(Rat) 

85 CCGACCTCATCACCAAGG TCTCCAGGACCCTCTTGC 

Keap1 

(Rat and 

mouse) 

96 GACTTCCTCGTGCAGCAG 

 
GAACACCTCGGACTCGC 

 
 

2.10. Statistical analysis 

All results are presented as mean ± standard error of the mean. Statistical testing 

involved a 2-tailed paired student t test (Excel Microsoft). For studies using multiple 

testing a one-way ANOVA was used followed by Fisher’s LSD post hoc test. 

 

 

 

 

 

 

 



	
   77	
  

 

 

 
 

                                      

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Chapter 3 

 Synaptic NMDAR activity control of Foxo1 and Nrf2            

                            transcription factors  
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3.1. Summary 

 
The thioredoxin-peroxiredoxin system provides protection against oxidants by 

neutralizing ROS and maintaining normal redox homeostasis. (Chae et al., 

1994; Schulze et al., 2004). Thioredoxin anti-oxidative function is suppressed 

by an endogenous inhibitor known as thioredoxin interacting protein (Txnip). 

(Schulze et al., 2004; Yoshida et al., 2005). Our group has previously shown 

that synaptic activity enhances thioredoxin activity by causing Txnip down 

regulation, whereby synaptic activity promotes PI3K-directed nuclear exclusion 

of Foxo (Papadia et al., 2008). However, the Foxo-inhibiting capacity of 

PI3K/Akt pathway is thought to be short- lived. This is attributed to a key 

aspect of Foxo regulation, which is once PI3K/Akt activity has returned to 

baseline, Foxos localize to the nucleus to resume the activation of their 

downstream genes. 
 
 

In this study, I demonstrate that synaptic NMDAR activity not only triggers Foxo 

export, but also suppresses the expression of Foxo1. I also found that blockade of 

PI3K activity prevented both Foxo3 nuclear export and suppression of Foxo1 

expression, raising the possibility that Foxo1 is itself a Foxo target gene. 

Moreover, the data presented here revealed that Foxo3, and to a lesser extent 

Foxo1 transactivates the Foxo1 promoter via a consensus Foxo binding site (GTA 

AAC AA), and also an upstream sequence resembling a classical Foxo-binding 

insulin response sequence (CAA AAC AA). The proximal (GTA AAC AA) 

sequence mediated both the activity-dependent and the IGF-1-dependent 

suppression of Foxo1 promoter. Thus, through a feed-forward inhibition 

mechanism, synaptic activity triggers Foxo export resulting in suppression of 

Foxo1 expression. These published results suggest that Foxo-inactivating signals 

are likely to result in longer-term inhibition of Foxo target gene expression than 

previously thought (Al-Mubarak et al., 2009). 
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In addition to its suppressing effect on Foxo, I found that synaptic activity 

downregulates the Nrf2/ARE antioxidant pathway inhibitor, Keap1. I have shown  

that synaptic activity enhances Nrf2 capacity to drive ARE-reporter and reduces 

Keap1 expression at both mRNA and protein levels in an NMDAR-dependent 

fashion. I also demonstrated that the activity-dependent regulation of Keap1 occurs, 

at least in part, at a transcriptional level. 
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3.2. Results 

 

3.2.1. Foxo1 expression is suppressed by synaptic activity 

Synaptic activity had been observed to rapidly inhibit Foxo pro-oxidative target 

gene Txnip, through promoting Foxo1 cytoplasmic retention and its dissociation 

from the Txnip promoter (Papadia et al., 2008). In line with this reported 

finding, I sought to determine whether synaptic activity induced longer-lasting 

changes to Foxo1 activity other than its acute export from the nucleus. Rat cortical 

neurons were placed in trophically deprived medium and synaptic activity was 

stimulated using the established method of network disinhibition, in which the 

GABAA receptor antagonist bicucullin (BiC) was co-applied with the K+ channel 

antagonist 4-aminopyridine (4-AP) (which enhances burst frequency, referred to 

hereafter as BiC) (Hardingham et al., 2001; Papadia et al., 2005). In time course 

experiments, the expression of Foxo1 was strongly suppressed 4h after 

enhancing synaptic activity with BiC and this was maintained at 24 h post-

stimulation (Fig.3.1A). However, MK-801 (an established  NMDAR   antagonist) 

co-treatments   attenuated   Foxo1 transcriptional suppression indicating that the 

inhibitory effect of synaptic activity is NMDAR-dependent. Next, the level of 

Foxo1 protein was assayed by western blot 24 h post-stimulation. The results 

confirmed the substantial down regulation of Foxo1 compared to control (Fig. 

3.1B). 
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Figure 3.1. Synaptic NMDAR activity suppresses expression of Foxo1.  
A) QRT-PCR analysis of Foxo1 mRNA levels in neurons placed in trophically 
deprived medium and stimulated as indicated. Levels of Foxo1 mRNA are 
normalized to those of GAPDH. n=3, *p<0.05. B) Example western blot 
demonstrating that activity-dependent suppression of Foxo1 mRNA levels results 
in lower protein expression. Example western of total protein lysates are shown  
t o  illustrate the effect of  BiC stimulation on Foxo1 protein levels after 24 h. For 
comparison, Akt levels are shown to be unaltered. The experiment was repeated 
three times across three independent cultures
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3.2.2. Synaptic activity regulation of Foxo1 is PI3K-dependent 

 
Having shown that synaptic activity down regulates Foxo1 expression, we sought 

to decipher the mechanism by which Foxo1 expression is suppressed by synaptic 

activity. Since Foxo itself, is subject to activity dependent nuclear export via the 

PI3K-Akt pathway (Papadia et al., 2008; Martel et al., 2009), we first sought to 

analyse the Foxo1 promoter. Interestingly, two potential Foxo binding sites were 

detected. A proximal site at –306 nt. near the transcription start site (GTA AAC 

AA) matching the exact Foxo-binding consensus (Furuyama et al., 2000) and a 

consensus insulin-response sequence (IRS, CAA AAC AA) at -483 nt (Guo et al., 

1999). The sequence of these elements is evolutionarily conserved in rodents and 

humans genomes, indicative of functional importance (Fig. 3.2A). Of note, the in 

silico studies as well as the promoter constructs generation was all performed by 

Prof. Giles Hardingham. Before evaluating the significance of these consensus 

sites directly, we sought to identify which signal transduction pathway was 

required in the activity dependent down regulation. Given the observed blockade 

of the activity-dependent nuclear export of the Foxo1 (Papadia et al., 2008; Martel 

et al., 2009), I sought to determine whether synaptic activity promotes the nuclear 

exclusion of Foxo3 in the same manner. To that end, neurons were transfected 

with GFP-tagged Foxo3 and 24 h post transfection the cells were stimulated with 

BiC for 1 h in the presence or absence of LY294002 and GFP-Foxo3 subcellular 

localization was assessed by immunofluorescence using anti-GFP antibody. 

Subcellular distribution of GFP-Foxo3 was scored as either nuclear (higher levels 

of GFP immunostaining in nucleus than cytoplasm or when a defined nuclear 

border is visible), nuclear + cytoplasmic (even distribution in nucleus and 

cytoplasm), or cytoplasmic (higher levels of GFP immunostaining in cytoplasm 

than nucleus) and the percentage of each category was calculated for each 

condition. The analysis revealed that synaptic activity triggers Foxo3 export in a 

PI3K-sensitive manner as pre-treatments with LY294002 attenuated the activity-

dependent nuclear export (Fig. 3.2 C and D) Next, I wanted to test if synaptic 

activity exploits the same signalling transduction pathway to elicit Foxo1 
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suppression. To that end, neurons were pre-incubated with LY294002 then treated 

with BiC for 24 h. The BiC derived suppression of Foxo1 expression was 

completely reversed by LY294002 confirming that synaptic activity suppresses 

Foxo1 in a PI3K-dependent manner (Fig. 3.2B). Similarly, LY294002 was shown 

to block the activity-dependent down regulation of Txnip, which was found to be a 

Foxo target gene (Papadia et al., 2008). 
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Figure 3.2. Synaptic activity suppresses Foxo1 and promotes Foxo3 nuclear 
export in a PI3K-dependent manner.  
A) Schematic illustrating the position and conservation of the putative FOXO-
response elements within the Foxo1 promoter. Nucleotide positions refer to the rat 
gene. B) QRT-PCR analysis of Foxo1 mRNA levels in neurons placed in trophically 
deprived medium and stimulated with BiC in the presence or absence of LY294002 
(50 µM), n=3, *p< 0.05. C, D) Neuronal activity promotes the nuclear export of 
Foxo3 via PI3K. Neurons were transfected with GFP-tagged Foxo3 and 24 h later 
were stimulated with BiC for 1 h in the presence or absence of PI3K inhibitor 
LY294002 (50 µM). The cells were then fixed and processed for 
immunofluorescence with an anti-GFP antibody as described in section 2.7. C) 
Example pictures are shown from the experiments performed. D) Quantification of 
the subcellular distribution of GFP-Foxo3 using the scoring system described earlier 
in section 3.2.2. 15-35 cells were analysed for each condition, n=4,  *p< 0.05 
assessment of the effect of the indicated treatment on GFP-Foxo3 localization 
compared to control, #p< 0.05 assessment of the effect of blocking the PI3K pathway 
on the activity-derived Foxo3 nuclear exclusion.



	
   86	
  

 
 

3.2.3. Foxo1 is a Foxo target gene 

 
To test the hypothesis that Foxo1 is a Foxo target gene, we isolated a 1 kb 

fragment of the Foxo1 promoter and cloned it in front of a luciferase reporter 

gene. We next created a mutant version of it with the proximal putative Foxo 

consensus site mutated to GTCGACAA (Foxo1(mut1)- Luc,  bold  underlined  

indicates  the  altered  nucleotides).  Of note, the  Foxo1-Luc construct  and  the  

mutant  versions  were generated  by  Prof.  Giles Hardingham, while Foxo1-

Luc reporter activity experiments were carried out by myself and Prof. Giles 

Hardingham. Transfections were performed on neurons with Foxo1- Luc and 24 

h later cells were stimulated for 24 h with BiC or left untreated. We observed 

that Foxo1-Luc activity was strongly repressed by BiC-induced neuronal activity.  

(Fig.3.3A).  Mutation of the proximal Foxo  consensus  site  produced  a 

significant reduction in the basal Foxo1 promoter activity. Altogether, our results 

suggest that the proximal (GTA AAC AA) Foxo consensus site is involved in 

the activity-dependent Foxo1 promoter activity suppression. 

 

In accordance to published work on the trophic factors-triggered Foxo1 nuclear 

export (Soriano et al., 2006), we preformed the same assay placing the neurons 

in trophic rich medium containing insulin, which activates neuronal IGF-1 

receptors and obtained a similar effect as inducing synaptic activity-strong 

suppression of Foxo1 promoter activity that is blocked by mutation of the Foxo 

consensus site (Fig. 3.3A).  

 

In order to investigate whether the identified proximal site is a Foxo- responsive 

element, neurons were co-transfected with either Foxo1-Luc or (Foxo1(mut1)-Luc, 

along with vectors driving the constitutive expression of either the major neuronal 

Foxos, Foxo1 and Foxo3, or a control (β-globin). Our data shows that expression 

of Foxo3 and, to a lesser extent Foxo1 both strongly enhanced the wild type  

Foxo1  promoter  activity.  In contrast, expression of Foxo3 and Foxo1 produced a  
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modest increase in Foxo1(mut1)-Luc activity  (Fig. 3.3B). These results indicate 

that the proximal Foxo consensus site on the Foxo1 promoter is indeed Foxo- 

responsive.  However, the small increase in  Foxo1(mut1)-Luc  activity  observed 

following Foxo expression, is suggestive of  the presence of an additional Foxo-

responsive  element  within  the  Foxo1  promoter  (Fig. 3.3B). One obvious 

candidate was the upstream IRS consensus sequence (CAA AAC AA). We 

therefore tested the effect of mutating this site on the responsiveness of the Foxo1 

promoter to Foxo3  (since Foxo3 has the  largest  transactivating  effect  on  Foxo1  

promoter). Mutation of the IRS-like element to CTAGACAA also reduced Foxo-

responsiveness of the Foxo1 promoter both when introduced independently 

Foxo1(mut2)-Luc and also when combined with the first mutation  

Foxo1(mut1+2)-Luc (Fig. 3.3C). Thus our data   underscore   the   need   for   both   

elements   for   achieving   full   Foxo responsiveness. To our surprise, the 

doubly mutated Foxo1(mut1+2)-Luc  reporter displayed a higher basal activity 

compared with the Foxo1(mut1)-Luc (Fig. 3.3 C).  The reason behind this is not 

clear, since mutation of the IRS site alone does not raise basal promoter activity 

(compare WT Foxo1-Luc with Foxo1(mut2)-Luc, Fig. 3.3C). While these data 

indicate that both sites are required for full activation of the Foxo1 promoter by 

Foxos, they don’t however, assess whether Foxo1 or Foxo3 bind directly to Foxo1 

promoter. On the same note, Essaghir et al. reported a direct association of FOXO1 

and FOXO3 with FOXO1 promoter in HEK293T cells as seen by chromatin 

immunoprecipitation (CHIP) assay (Essaghir et al., 2009). However, whether this 

direct interaction exists in neurons could be addressed in future studies by 

performing CHIP assay with anti-Foxo antibodies. 
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Figure 3.3. Foxo consensus site mediates the activity-dependent suppression and    
Foxo-mediated transactivation of Foxo1 promoter.  
A) Neurons were transfected with either Foxo1-Luc or Foxo1(mut1)-Luc, plus a 
pTK-renilla normalization vector. Neurons were stimulated where indicated with 
BiC or placed in trophically deprived medium containing insulin for 24 h after which 
reporter activity levels were measured (normalized to renilla levels). n=6, B) 
Neurons were transfected with either Foxo1-Luc or Foxo1(mut1)-Luc, plus a pTK-
renilla normalization vector. In addition, they were co-transfected with a vector 
encoding Foxo1, Foxo3, or beta-globin (control). Reporter activity levels were 
measured (normalized to renilla levels) at 48h post-transfection. *p < 0.05 
assessment of the effect of Foxo expression relative to appropriate control, #p < 0.05 
assessment of the effect of the mutation on basal, and Foxo-induced activity of the 
Foxo1 promoter (n =7). C) Neurons were transfected with either Foxo1-Luc, or 
mutated variants, plus a pTK-renilla normalization vector. In addition, they were 
cotransfected with a vector encoding either Foxo3, or beta-globin (control). Reporter 
activity levels were measured (normalized to renilla levels) at 48 h post-transfection. 
*p < 0.05 (n = 5). 
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3.2.4. Synaptic activity induces Nrf2-driven ARE reporter activity 

Having established that synaptic activity may promote neuronal-survival signalling 

through inhibiting Foxo1, I wanted to determine whether synaptic activity could boost 

antioxidant defences particularly those regulated by the ARE/ Nrf2/ Keap1 pathway. Our 

group has previously reported that Keap1 forced expression reduces the activity-

dependent induction of Srxn1 reporter (Soriano et al., 2008). Based on this observation, I 

wanted to investigate whether if synaptic activity can elicit a similar effect on the Nrf2-

driven ARE activity and whether it was Keap1 sensitive. Therefore, I studied the effect 

of Keap1 overexpression on the Nrf2-driven ARE-Luc activity in control and BiC-

stimulated rat cortical neurons. The analysis revealed that synaptic activity dramatically 

increases Nrf2 capacity to induce ARE-Luc activity (Fig. 3.4), however this induction 

was blocked upon Keap1 co-expression suggesting that the activity dependent induction 

of Nrf2 driven ARE-Luc activity is exerted via Keap1 suppression.
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Figure 3.4. Synaptic NMDAR activity induces Nrf2-driven-ARE-promoter activity 
in a Keap1 sensitive manner.  
Neurons were transfected with ARE-Luc plus pcDNA3.1-Nrf2 (or pGlobin), plus 
pcDNA3.1-Keap1 (or pGlobin). 24h post- transfection, neurons were stimulated where 
indicated with BiC for 24 h, after which reporter activity levels were measured 
(normalized to renilla levels). *p <0.05, (n = 6). 
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3.2.5. Characterization of Keap1 suppression by synaptic activity 

 
A previous mouse microarray expression data showed marked down regulation of 

mouse Keap1 (Nrf2 negative regulator) mRNA by BiC treatment (in MK-801 

sensitive manner) at 4 h time point. To confirm this finding, mouse and rat cortical 

cultures were treated with BiC for 4h, before harvesting RNA and the subsequent 

evaluation of Keap1 and Srxn1 (as a an example of an activity-regulated gene) mRNA 

expression by qRT-PCR (Fig. 3.5 A and B). The results revealed a large reduction in 

Keap1 mRNA levels following BiC treatment in both mouse and rat primary neuronal 

cultures (Fig. 3.5 A and B) supporting the initial microarray results. In contrast, 

synaptic activity strongly induced Srxn1 mRNA expression consistent with previous 

studies (Papadia et al., 2008). The suppressing effect of synaptic activity on Keap1 

mRNA was reduced by co-application of MK-801, which restored Keap1 mRNA 

expression to a level slightly lower than that of the control but not significantly 

different, indicating that synaptic NMDAR activity is important for the suppressing 

function of synaptic activity (Fig. 3.5 C). The repression of Keap1 expression by 

synaptic activity was also reflected at the protein level as evaluated by western blot, 

whereby 4 h of BiC treatment resulted in a significant down-regulation of Keap1 

protein (Fig. 3.5 D and E). 
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Figure 3.5. Synaptic NMDAR activity suppresses Keap1 expression. 
QRT-PCR analysis of rat Keap1 mRNA levels in neurons placed in trophically 
deprived medium and stimulated with BiC. Levels of Keap1 mRNA are normalized to 
GAPDH. A, B) Synaptic activity down regulates Keap1 mRNA expression and up-
regulates Srxn1 mRNA expression in A) mouse and B) rat neurons at 4 h time point. 
*p<0.05, (n=3-4). C) Neurons were treated with BiC in the presence or absence of the 
NMDAR antagonist MK-801 (10µM). *p<0.05, not significant (n.s.), (n=6-7). D) 
Quantification of Keap1 protein expression in response to 4h treatment with BiC 
normalized to β-tubulin. *p<0.05compared with control (n=5). E) Example western 
blot picture of Keap1 expression and β-tubulin loading control. 
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 3.2.6. Synaptic activity regulates Keap1 at a transcriptional level 

 
I next wanted to investigate the mechanism by which synaptic activity down- 

regulates Keap1. The most likely mechanism of activity-dependent suppression 

of Keap1 expression is transcriptional, although other potential mechanisms may 

exist, such as regulation of mRNA stability. To address this, I created a Keap1-

luciferase reporter construct by cloning approximately 890 bp of the rat Keap1 

promoter and 5´ UTR upstream of a luciferase reporter gene. Neurons were 

transfected with Keap1- Luc and 24 h later were treated for another 24 h with BiC 

or left untreated before carrying out the luciferase assay. I found that BiC 

stimulations reduce Keap1-Luc activity by around 40% compared to the un-

stimulated neurons and this suppressive effect was reversed by co-application of  

MK-801 (Fig. 3.6A). These results suggest that synaptic activity elicits its 

suppressing effect on Keap1 by directly downregulating the transcriptional 

activity of Keap1 promoter. Given this, I wondered if Keap1 could be a down 

stream target of Foxo, since Foxos are subject to synaptic activity regulation. To 

test this, I looked at the effect of LY294002 treatment on synaptic activity-

induced downregulation of Keap1 mRNA levels. The rationale behind this, is if 

Keap1 is a Foxo target gene and given the pre-established involvement of PI3K 

pathway in the activity-dependent regulation of Foxo, then LY294002 pre- 

treatments shall attenuate the suppressive effect of BiC on Keap1 mRNA 

expression. However, data obtained from qPCR analysis showed no change either 

in Keap1 basal expression or in the activity-induced repression of Keap1 mRNA, 

suggesting that Keap1 is unlikely to be a Foxo target gene (Fig. 3.6B). 
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Figure 3.6. Synaptic NMDAR activity downregulates the transcriptional                                                              
activity of Keap1 promoter.  
A) Neurons were transfected with Keap1-luciferase reporter, plus a TK-Renilla 
control vector. At 24 h after transfection, neurons were stimulated with the indicated 
drugs for 24 h, and firefly luciferase reporter activity was measured, normalized to 
the Renilla control. *p<0.05, (n=4). B) QRT-PCR analysis of Keap1 mRNA levels in 
neurons placed in trophically deprived medium and stimulated as indicated in the 
presence or absence of the PI3K inhibitor 50µM LY294002, (n=2).
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3.3. Discussion 
 

3.3.1. Synaptic NMDAR activity suppresses Foxo1 expression via a cis-acting 

FOXO binding site 

In this study we have demonstrated that Foxo1 is a Foxo target gene and as a 

result, its expression is subject to feed-forward inhibition by synaptic NMDAR 

activity, which promotes Foxo nuclear exclusion. Thus, the suppressive effects 

of Foxo export on the expression of Foxo target genes may last considerably 

longer than previously thought due to the long-lasting effects of transcriptional 

suppression. 
 
 
Synaptic activity exerts its inhibitory effect on Foxo1 activity not only through 

inducing post-translational changes (Foxo1 nuclear export, Papadia et al., 2008; 

Martel et al., 2009) but also through altering Foxo1 expression. I found that 

Foxo1 expression was strongly suppressed following synaptic activity stimulation 

(Fig. 3.1). The activity-induced suppression of Foxo1 and export of Foxo3 was 

PI3K- dependent, as treatments with LY294002 completely blocked the effect of 

synaptic activity (Fig. 3.2B and C). This observation led us to analyse the 

promoter region of Foxo1, which revealed two potential Foxo binding sites (Fig. 

3.2A). Mutating the proximal Foxo consensus site reduced Foxo1 promoter 

activity and abolished both the effect of synaptic activity and the effect of IGF-I 

on Foxo1 promoter, emphasizing the importance of this consensus site in 

mediating Foxo-inactivating signals (Fig.3.3A). We also found this consensus site 

to be strongly activated by Foxo3 and, to a lesser extent Foxo1 (Fig 3.3B). 

Moreover, the proximal consensus site was not the only Foxo-responsive element 

within the Foxo1 promoter, as a small but significant increase was observed in the 

activity of Foxo1(mut1)-Luc following the expression of Foxo3. This observation 

led us to identify the upstream IRS consensus sequence as a Foxo responsive 

element (Fig. 3.3C). 
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In neurons, Foxos are mostly involved in promoting cell death in response to 

various stress stimuli such as oxidative stress (Lehtinen et al., 2006), loss of 

trophic factor (Gilley et al., 2003) and ischemic injury (Fukunaga and Shioda, 

2009). However, activation of synaptic NMDAR has been shown to render 

cultured neurons more resistant to oxidative stress, this effect was in part attributed 

to the suppression of Foxo1 target gene Txnip through promoting the PI3K-

dependent Foxo1 nuclear exclusion. In contrast, elimination of NMDAR activity 

upregulates Txnip both in vivo and in vitro and promotes vulnerability to oxidative 

stress (Papadia et al., 2008). On the other hand, activation of extrasynaptic 

NMDAR promotes Foxo3 nuclear accumulation, which subsequently contributes 

to NMDAR-mediated neuronal death in hippocampal neurons. However, neurons 

depleted of endogenous Foxo3 or undergoing prolonged periods of synaptic 

activity are more resistant to excitotoxic insults (Dick and Bading, 2010).  

Furthermore, exposure of neurons to the phenolic antioxidant tBHQ protects 

against NMDA-evoked excitotoxicity, at least in part, by promoting Foxo3 

cytoplasmic retention (Bahia et al., 2012). Neurotrophic factors are thought to 

promote neuronal survival at least in part through triggering the nuclear export of 

Foxo and the subsequent suppression of Foxo-directed gene expression, and the 

same may be true of synaptic NMDAR activity (Gan et al., 2005; Hardingham, 

2006). 
 
 
Although a large body of evidence shows that cell death is the most likely outcome 

of Foxos activation in neurons, work from the Kalb group has shown that genetic or 

pharmacological manoeuvres that promote nuclear accumulation of Foxo3 confers 

protection against known causes of motor neuron diseases in mouse spinal cord 

cultures (Mojsilovic-Petrovic et al., 2009). Their findings are in direct contrast to 

previous studies where overexpression of Foxo3 led to the death of motor neurons 

and cerebellar granule neurons (Brunet et al., 1999; Barthelemy et al., 2004). The 

disparities between these two observations may relate to the levels of transgene 

expression, the nature of stimulus used or differences in the neuronal cell types used  
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(Nemoto and Finkel, 2002). However, it is plausible that Foxo may need to be 

activated in the proper ‘window’ of time/magnitude in order to confer 

neuroprotection, otherwise it is detrimental. 
 
 
 
The regulation of Foxo1 promoter by Foxos may serve as an important feed-forward 

mechanism aimed to reinforce the effect of Foxo-inactivating or -activating signals 

such as synaptic activity or oxidative stress respectively, on FOXO1-target genes 

expression. This aspect of Foxo1 regulation could be unfavourable particularly in 

tumours, where abnormal activation of the PI3K-Akt pathway is an important step in 

their initiation and maintenance, Akt-mediated Foxo export may then lead to 

suppression of Foxo1 expression, exacerbating the situation further. 
 
 
Shortly before the publication of this study, the Demoulin group performed a study 

on FOXO regulation in human fibroblast and arrived at the same conclusion that 

FOXO1 is a FOXO target gene (Essaghir et al., 2009). In agreement with our 

observations, they reported that FOXO3 displayed a stronger transactivating effect 

on FOXO1 promoter in comparison to FOXO1 (Fig 3.3B). They also identified the 

same proximal Foxo consensus site (GTA AAC AA) as mediating a large portion 

of the observed Foxo responsiveness, which was responsible for growth factor-

induced transcriptional suppression. Interestingly, they found that mutation of this 

proximal site reduced the activation of the promoter by FOXO3 overexpression, 

but did not abolish it completely. This raises the possibility that the IRS-like 

sequence identified in our study may be mediating the remaining induction. It is 

therefore likely that Foxo-inactivating signals are capable of suppressing Foxo1 

expression in a variety, if not all, cell types. 
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3.3.2. Synaptic NMDAR activity suppresses Keap1 expression 

 
Keap1 was initially described as a cytoplasmic inhibitor of Nrf2 that binds to 

actin cytoskeleton and Nrf2 to retain Nrf2 in the cytoplasm and target it for 

subsequent ubiquitination and degradation. In this study, the results suggest that 

synaptic NMDAR activity could induce the Nrf2/ARE signalling pathway by 

suppressing Keap1. Synaptic activity enhanced exogenous Nrf2 capacity to 

induce ARE-Luc activity in a Keap1 sensitive manner (Fig. 3.4) In addition, I 

showed that induction of synaptic activity results in the downregulation of Keap1 

mRNA and protein expression in an NMDAR-dependent manner (Fig 3.5).  The 

activity-dependent regulation of Keap1 appears to occur, at least in part, at a 

transcriptional level as BiC stimulations results in a significant suppression of 

Keap1 promoter activity (Fig. 3.6A). Although Keap1 suppression could be a 

plausible mechanism by which synaptic activity could boost the Nrf2-controled 

antioxidant defences, I didn’t pursue this study further, as I find later in section 

4.2.3 that the endogenous Nrf2 pathway is inactive in neurons and that it is 

predominantly astrocytic. Nevertheless, it is conceivable that synaptic activity 

could promote cell survival through repressing Keap1-mediated pro-death 

signalling. 
 
 
Besides binding to its well-characterized substrate, Nrf2, Keap1 has been 

reported to bind other proteins directly or indirectly through its DGR domain. 

Recent studies have suggested a role for Keap1 in regulating cellular apoptosis 

through altering the activity of pro-apoptotic and anti-apoptotic proteins such as 

ASK1 and Bcl-2/Bcl-xL respectively (Stepkowski and Kruszewski, 2011). 

Phosphoglycerate mutase 5 (PGAM5), a recently characterized atypical member 

of the phosphoglycerate mutase family and a direct binding partner of the Bcl-xL 

anti-apoptotic protein, have been reported to interact with the DGR domain of 

Keap1 (Niture and Jaiswal, 2011a). PGAM5 acts as a bridge mediating Keap1 

interaction with Bcl-xL and controlling Keap1-mediated degradation of Bcl-xL. 
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Further studies revealed that overexpression of Keap1 leads to increased 

degradation of both PGAM5 and Bcl-xL, which increases/activates pro-apoptotic 

factors and eventually resulting in increased cell apoptosis and decreased cell 

survival. On the other hand, siRNA inhibition of Keap1 or treatments with 

antioxidants such as tBHQ leads to the stabilization of Bcl-xL and increases cell 

survival (Niture and Jaiswal, 2011a). 
 
 
Bcl-2 is another recently reported substrate for Keap1. Unlike Bcl-xL, Keap1 DGR 

domain directly interacts with the BH2 domain of Bcl-2 and facilitates the Keap1- 

Cul3 mediated ubiquitination of Bcl-2 lysine17 residue and degradation of Bcl-2 

(Niture and Jaiswal, 2011b). Overexpression of Keap1 can promote apoptosis by 

degrading Bcl-2 and decreasing Bcl-2: Bax heterodimers. For instance, Keap1 

overexpression enhanced etoposide- mediated apoptosis in cancer cell. However, 

antioxidants antagonize Keap1: Bcl-2 interaction, leading to the release and 

stabilization of Bcl-2, increased Bax:Bcl-2 heterodimer and cell survival. The 

stabilization of the anti-apoptotic proteins Bcl-2 and Bcl-xL and prevention of 

apoptosis are presumably important mechanisms by which the cells protect 

themselves from dying in acute stress (Niture and Jaiswal, 2011b). 
 
 
ASK-1 was identified as the main MAPK kinase kinase and a pivotal component 

in the mechanism of cytokine- and stress-induced apoptosis (Saitoh et al., 1998). 

Dephosphorylation of ASK-1 by PGAM5 leads to its activation, which 

contributes to apoptosis in various stress conditions such toxification, 

neurodegenerative diseases, immune responses (Stepkowski and Kruszewski, 

2011) and oxidative stress (Niso-Santano et al., 2010). Whereas thioredoxin, an 

Nrf2-traget gene, binds and inhibits ASK-1.The link between ASK-1 and 

Nrf2/Keap1 pathway was demonstrated in the study of paraquat-induced cell 

death, in which Keap1-deficient mouse embryonic fibroblasts (MEFs) were 

insensitive to paraquat-mediated cell death and this effect was attributed to the 

inability to activate ASK-1, whilst ASK-1 was constitutively activated in Nrf2-

deficient MEFs displaying hypersensitivity to the same insult (Niso-Santano et 

al., 2010). However, whether Keap1/PGAM5 binding affects ASK-1 
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dephosphoryaltion is unclear. 
 
 
The activation of NF-κB family of transcription factors has been associated with 

the development and/or progression of cancer by regulating the expression of 

genes involved in cell growth and proliferation. Recently, IkB kinase (IKKβ), a 

positive regulator of NF-κB, was found to be destabilized by Keap1, which 

resulted in the inhibition of NF-κB-induced tumourgenesis (Lee et al., 2009; Kim 

et al., 2010). Moreover, genomic alterations of Keap1 fail to facilitate IKKβ 

degradation, which then leads to the activation of NF-κB pathway in human 

cancers (Lee et al., 2009). Thus, Keap1 acts as a tumour suppressor through 

negative regulation of three substrates Nrf2, IKKβ and Bcl-2/Bcl-xL. 
 
 
The notion that the activity-dependent inhibition of Keap1 may promote cell 

survival requires further investigation. Future studies will be needed to address 

the effect of synaptic activity on the stability of the anti-apoptotic proteins Bcl-2 

and Bcl-xL and/or the activity of ASK-1 and NF-κB, and to determine whether 

this effect is conferred through Keap1 suppression. However, this is beyond the 

scope of this thesis as we are primarily interested in the regulation of the 

endogenous Nrf2/ARE pathway in response to intrinsic stimuli rather than the 

regulation of Keap1- mediated pro-death signalling. 
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Chapter 4 

              Mild oxidative stress activates the Nrf2 pathway in    

  astrocytes but not neurons 
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4.1. Summary  

Since Nrf2 plays an important role in sensing and combating oxidative stress        
(Kensler et al., 2007; Cullinan et al., 2004), I postulated that sub-toxic levels of 
oxidative stress might be sufficient to turn on the Nrf2-dependent cytoprotective  
genes expression. To recreate oxidative stress in vitro, I utilized sub-toxic doses of 
H2O2. I chose three previously established markers of Nrf2 activation to evaluate: 
Srxn1 (Soriano et al., 2008) Hmox1 and xCT (Alam et al., 2000; Ishi et al., 2000; 
Shih et al., 2003). I found that all three markers were transcriptionally induced in 
astrocytes containing neuronal cultures (AC-neurons) following sub-toxic H2O2 
application. However, the inductive effect of H2O2 was abolished in cultures 
prepared from Nrf2-/- mice, confirming Nrf2-dependent mechanism of action. I also 
found that application of H2O2 or tBHQ to AC-neurons induces Hmox1 
immunostaining in astrocytes but not neurons. Moreover, neither mild oxidative 
stress, tBHQ nor Keap1 genetic ablation could induce Nrf2 target gene expression in 
neuronal cultures devoid of astrocytes. However, Nrf2 forced expression in neurons 
was capable of inducing endogenous Hmox1 expression. These results therefore, 
demonstrate that the endogenous Nrf2 pathway is responsive to mild oxidative stress 
and that astrocytes are the sole locus of Nrf2 activation in our model. Of note part of 
the work presented in this chapter has been published (Bell et al., 2011a). 
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4.2. Results 

4.2.1. Establishment of culture systems and H2O2 stimulations 

Cortical mouse neurons from E17.5 CD1 mice were cultured as described in section 

2.1. In this study I utilized three types of cortical cultures: astrocytes containing 

neuronal cultures, astrocyte-free neuronal cultures designated as (AC-neurons) and 

(AF-neurons) respectively and astrocytes enriched cultures (astrocytes). To control 

for non-neuronal cell proliferation, cultures were grown in the presence or absence of 

the anti-mitotic AraC. To obtain (AC-neurons) comprising (more than 90% NeuN+ 

and and less than 10% GFAP+  cells), cultures were treated  with AraC on DIV04 

(Fig. 4.1 A). For (AF) cell population, comprising more than 98%  Neu N+ and less 

than 0.2% GFAP+  cells, AraC was added to cultures on DIV0 (Fig. 4.1 B). Astrocyte 

cultures were prepared as described in section 2.1 and grown in the absence of AraC 

, which results in a cell population comprising of more than 96%  GFAP+  and less 

than 4%  Neu N+ cells (Fig. 4.1 C) (Bell et al., 2011a). 

  

Various experimental approaches have been developed to model oxidative stress in 

primary neural cell cultures, which include exposure to pro-oxidative conditions such 

OGD (Furuichi et al., 2005), GSH-deprivation (Ratan et al., 1994) and addition of 

external chemical compounds with the capacity to undergo redox cycling such as 

Paraquat (PQT) (Comporti, 1989; Escartin et al., 2011) or addition of H2O2 (Rojo et 

al., 2008) Papdia et al., 2008; Soriano et al., 2008). In addition, some studies utilize 

tBHQ to induce oxidative stress-mediated Nrf2 activation, however, reports differ on 

the involvement of oxidative stress in the tBHQ-mediated Nrf2 activation. While 

tBHQ was shown to lead to OH•  radical formation, which was inhibited upon the 

addition of catalase in human hepatoma cells (Pinkus et al., 1996), activation of the 

ARE by tBHQ in human neuroblastoma cells (Lee et al., 2001) or in primary cortical 

cultures derived from ARE-hPAP reporter mice (Johnson et al., 2002) was 

independent of oxidative stress as pre-treatment with antioxidants or antioxidant 

enzymes didn’t inhibit tBHQ-induced ARE activation. 

 In the present study, I have utilized H2O2 to model oxidative stress in vitro because 

it’s endogenously produced and can easily diffuse through cell membranes (Halliwell 
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and Gutteridge, 1989; Hogg et al., 1992). Cells were pre-incubated in TMo for ~ 16 

h prior to 6 h stimulation with sub-toxic doses of H2O2 (25µM-100µM) (Fig. 4.1D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Establishment of cell culture systems and oxidative stress model.  
Example pictures showing GFAP immunostaining (red) with nuclear DAPI stain (blue). 
A) AC-neurons. B) AF-neurons C) Astrocytes. D) To induce oxidative stress a range of 
H2O2 doses (25µM-100µM) was utilized and cell viability was evaluated in AC- neurons 
by assessing nuclear integrity as described in section 2.4. (n=3), *p<0.05. 
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 4.2.2. Mild oxidative stress upregulates Nrf2-dependent gene expression 

In an effort to determine whether mild oxidative insult could activate the Nrf2 pathway, 

AC-neurons were exposed to either 10 µM tBHQ, as a positive control for Nrf2-dependent 

gene expression induction (Lee et al., 2003), or to a range of H2O2 doses  (25-100µM) for 

6 h after which RNA was harvested and converted to cDNA for subsequent qPCR 

analysis. Treatments with H2O2 showed marked upregulation of Srxn1 and Hmox1 gene 

expression (Fig. 4.2A, B). As for xCT mRNA levels, a modest yet significant induction 

was observed (Fig. 4.2 C). To look at dependence on Nrf2, cultures derived from Nrf2-/- 

mice were subjected to the same protocol. In these cultures, H2O2 was unable to induce 

Nrf2-target genes expression, highlighting the central role of Nrf2 in mediating the H2O2-

induced gene upregulation (Fig. 4.2). Loss of Nrf2 not only abolished the inductive effect 

of H2O2, but also dramatically reduced Hmox1 basal expression. Similar observation was 

reported in human endothelial cells, whereby transfection with Nrf2 siRNA produced a 

significant reduction in HMOX-1 mRNA expression (Jyrkkanen et al., 2008). Moreover, 

xCT basal expression was reduced but to a lesser extent in Nrf2 -/- cultures, while Srxn1 

basal levels remained unchanged. 
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Figure 4.2. Mild oxidative stress-mediated upregulation of phase II genes 
expression is Nrf2 dependent.  
AC-neurons were treated for 6 h in trophically deprived medium with H2O2

 or tBHQ 
at the indicated doses, followed by RNA isolation and qPCR analysis of gene 
expression (normalized to Gapdh) and compared to WT-control. (n=5-6) #p<0.05 
significantly different from WT-control ; *p<0.05 significantly different from 
corresponding treatment in Nrf2-/-, not done (N.D). A) Srxn1 mRNA levels. B) 
Hmox1 mRNA levels. C) xCT mRNA levels. 
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4.2.3. Mild oxidative stress-mediated Nrf2 activation is restricted to astrocytes  

The site of Nrf2 activation has been a matter of controversy. While most reports 

suggest that Nrf2 activation is predominantly astrocytic (Shih et al., 2003; Kraft et 

al., 2004; Vargas and Johnson, 2009), several lines of evidence show that Nrf2 could 

be induced in neurons in vitro (Johnson et al., 2002) and in vivo (Kraft et al., 2007).  

I therefore resolved to determine the locus of Nrf2 activation, in our in vitro model of 

oxidative stress by measuring the mRNA levels of Nrf2 downstream genes in AC-

neurons following 6 h exposure to H2O2 or tBHQ. The same experiment was 

performed with AF-neurons and astrocytes. QPCR analysis revealed a large 

induction of Srxn1, Hmox1, and xCT gene expression in both AC-neurons and 

astrocyte post H2O2 application (Fig. 4.3). By contrast, the absence of astrocytes in 

AF-neurons completely abolishes the H2O2-mediated gene induction (Fig. 4.3).   

However, in astrocytes, H2O2 triggers a stronger Nrf2-dependent gene expression 

(Fig 4.4) compared to the other culture types. These results strongly indicate that 

astrocytes are the primary locus for Nrf2 activation by mild oxidative stress.  
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Figure 4.3. Nrf2 activation by mild oxidative stress is astrocytes dependent.  
AC and AF-neurons were treated in parallel with H2O2

 or tBHQ at the indicated 
doses for 6 h, before harvesting RNA for qPCR analysis of gene expression 
(normalized to Gapdh). (n=5-9),  *p<0.05 significantly different from AC-neurons 
control. A) Srxn1 mRNA levels. B) Hmox1 mRNA levels. C) xCT mRNA levels. 
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Figure 4.4. H2O2 treatments trigger robust Nrf2-dependent induction in 
astrocytes.  
Astrocytes were treated with the indicated doses of H2O2

 for 6 h, before harvesting 
RNA for qPCR analysis of gene expression (normalized to Gapdh). (n=5-9), #p<0.05 
significantly different from control ; *p<0.05 significantly different from 
corresponding treatment in Nrf2-/-. A) Srxn1 mRNA levels. B) Hmox1 mRNA levels. 
C) xCT mRNA levels. 
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4.2.4. The Nrf2 pathway can't be activated in neurons even when surrounded by 

astrocytes  

The induction of Nrf2-dependent gene expression observed in AC-neurons is most 

likely attributable to Nrf2 activation in astrocytes, since AF-neurons devoid of 

astrocytes fail to respond to Nrf2 inducers (Fig. 4.3). However, I sought to rule out 

the possibility that Nrf2 could be activated in neurons when surrounded by 

astrocytes. One way to examine this notion is by performing immunofluorescence in 

AC-neurons using antibody to Hmox1 protein in conjunction with an antibody to the 

astrocytic marker GFAP. The analysis demonstrated an increase in Hmox1 

expression co-localized to GFAP positive cells following treatment with either tBHQ 

or H2O2 (Fig. 4.5A), whereas cells displaying neuronal morphology not only failed to 

respond to the treatments but also exhibited significantly lower basal expression 

compared to astrocytes (Fig. 4.5B). These results suggest that the Nrf2 pathway is 

inactive in neurons even when in contact with astrocytes and further confirms that 

astrocytes are the sole locus for Nrf2 activation. 
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Figure 4.5.  Activation of the Nrf2 pathway is confined to astrocytes.  
AC-neurons were treated with either H2O2 or tBHQ at the indicated doses for 24 h 
and then were stained with anti-Hmox1 (green) and anti-GFAP (red) and with DAPI 
(blue). A) Representative images of Hmox1 immunofluorescence staining showing 
that Hmox1 induction in response to either H2O2 or  tBHQ is specific to GFAP- 
positive astrocytes .B) Quantification of Hmox1 staining. (n=3), *p<0.05, versus 
astrocytes control. 
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4.2.5. Alleviating the Keap1-mediated Nrf2 suppression fails to activate the 

endogenous Nrf2 pathway, while forced Nrf2 expression rescues the pathway in 

neurons   

The failure to activate the Nrf2 pathway following the application of H2O2 or tBHQ 

in AF-neurons (Fig. 4.3) or even in neurons when surrounded by astrocytes in the 

AC-neurons (Fig. 4.5) led me to hypothesize that this was due to increased Keap1 

inhibition of Nrf2 in neurons. To test this, I evaluated the mRNA expression of Nrf2-

downstream genes in cultures derived from Keap1-/- mice.  Constitutively active Nrf2 

has been reported in Keap1 null MEF (Wakabayashi et al., 2003) and in Keap1 

knockdown cortical astrocytes (Gan et al., 2010) leading to the induction of Nqo1.  

Similarly, cortical mixed neuron/astrocyte cultures derived from Keap1-/- mice 

displayed an upregulation in phase II enzymes resulting in increased resistance of 

neurons against oxidative stress (Satoh et al., 2009).  In agreement with the previous 

reports, I have observed an elevation in the basal expression of Nrf2-target genes in 

AC-neurons and astrocytes prepared from Keap1-/- mice, whereas Keap1 deletion 

had no effect in AF-neurons (Fig. 4.6). The possibility that the lack of Nrf2 activity 

in neurons is due to low Nrf2 (Nfe2l2) gene expression was tested in our laboratory. 

A qPCR analysis of Nfe2l2 and Keap1 basal mRNA levels in the three culture types 

performed by Dr.Bell showed no significant difference in Keap1 expression between 

neurons and astrocytes, while interestingly Nfe2l2 mRNA levels were substantially 

lower in neurons (0.079 ± 0.027 and 4.9 ± 1.53 in AF- and astrocyte respectively, 

compared to AC-neurons). The diminished Nrf2 expression could account in part for 

the lack of Nrf2 activity in neurons. However, limited Nrf2 access to its target genes 

promoters is another plausible explanation for the lack of Nrf2 activity in neurons. 

To this end, I resolved to test if ectopic expression of Nrf2 in neurons could revive 

the pathway. Using a neuron-specific transfection protocol, neurons were co-

transfected with Nrf2 driven by the elongation factor-1α promoter (EF-Nrf2) and a 

CMV promoter driven eGFP (used as marker for transfected cells). GFP-positive 

neurons overexpressing Nrf2 displayed an increased Hmox1 staining as seen by 

immunofluorescence analysis (Fig. 4.7). This preliminary result suggests that ectopic 

Nrf2 is capable of transactivating its target genes and could be activated in neurons 

when available at sufficient levels, however, the same experiment should be repeated 
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to include appropriate controls in which neurons are transfected with a control 

plasmid such as Globin along with the eGFP and the intensity of Hmox1 expression 

should be evaluated in Nrf2 and Globin overexpressing neurons. All together these 

results suggest that the inactivity of endogenous Nrf2 in neurons and the failure to 

boost it through lifting the Keap1-mediated suppression is a result of Nrf2 low 

expression levels in neurons.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Keap1 genetic ablation is not sufficient to activate Nrf2 
transcriptional pathway in neurons.  
AC-neurons, AF-neurons and astrocytes were prepared from WT or Keap1-/- mice 
littermates. Cells were lysed and RNA was harvested for qPCR analysis of Srxn1, 
xCT and Hmox1 constitutive mRNA levels (normalized to Gapdh). (n=6-15),*p 
<0.05 significantly different compared to WT. 
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Figure 4.7. Nrf2 ectopic expression induces endogenous Hmox1 expression in 
neurons.  
Example pictures from preliminary immunocytochemistry experiments showing that 
Nrf2 forced expression could induce endogenous Hmox1 expression, however, 
inclusion of appropriate controls is required for more conclusive results. AC-neurons 
were co-transfected with pEF-Nrf2 and eGFP as a transfection marker (green) and 
after 48h subjected to immunocytochemical analysis of Hmox1 expression (red). 
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4.3. Discussion  

  Data presented herein are the first demonstrating that intrinsic cellular signals such 

as mild oxidative stress are capable of activating the endogenous Nrf2 pathway and 

mediating Nrf2-dependent phase II gene induction in an astrocyte specific manner. I 

also report the lack of neuronal response to Nrf2 activation by H2O2, Nrf2 specific 

inducer tBHQ or Keap1 genetic ablation. In addition, restricted induction of Hmox1 

to astrocytes in AC-neurons, excludes the possibility of neuronal contribution to the 

Nrf2-dependent gene upregulation observed post H2O2 or tBHQ treatments as a 

results of a specific neuron-astrocyte signalling. 

 

4.3.1. Nrf2-dependent gene expression is strongly induced in response to mild 

oxidative stress  

In this current study I have shown that endogenous Nrf2-dependent antioxidant 

response could be strongly triggered by mild oxidative stress (Fig. 4.2).  Robust 

induction was observed in Hmox1 gene expression levels following treatment with 

H2O2 (Fig. 4.2B), this elevation was also reflected at the protein level as seen by 

increased Hmox1 immunofluorescence staining (Fig. 4.5A).  Similarly, sub-toxic 

H2O2 doses increased Srxn1 and xCT mRNA levels (Fig. 4.2 A, C). I confirmed the 

Nrf2 specific requirement in the H2O2-mediated upregulation of phase II genes 

expression, as loss of Nrf2 completely ablated the inductive effect of H2O2. The 

impact of Nrf2 loss was not limited to the inducible levels of these genes, it also, as 

anticipated altered the basal mRNA expression of Hmox1 and xCT. Hmox1 basal 

levels dropped markedly in Nrf2-/- AC-neurons to about one tenth of that in WT, 

whereas xCT constitutive expression was reduced by around 30% in Nrf2-/- cells (Fig. 

4.2B, C). Moreover, Keap1 deficient cultures displayed constitutive upregulation of 

Hmox1 and xCT gene expression, further confirming the role of Nrf2 in controlling 

the basal expression (Fig. 4.6). This is in agreement with previous reports, 

documenting a significant upregulation of phase II enzymes gene expression or 

protein expression in the absence of Keap1 (Wakabayashi et al., 2003; Satoh et al.,  
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2009; Gan et al., 2010). Interestingly, while loss of Keap1 induced Srxn1 basal 

mRNA levels, no change was observed in Nrf2-/- cultures. Given that Srxn1 harbours 

composite ARE/AP-1 sites within its promoter (Soriano et al., 2008), its plausible 

that compensatory genetic mechanism controlled through the AP-1 site accounts for 

the lack of change in Srxn1 basal mRNA levels in Nrf2 deficient cells. 

H2O2 has been implicated in the pathway leading to the Ischemic-preconditioning 

phenomenon (IPC), in which sub-lethal ischemic episode renders the cells more 

resistant to a subsequent and normally lethal ischemic insult (Furuichi et al., 2005).  

In regard to this, our group has recently shown that Nrf2 activation contributes to the 

neuroprotective effect of IPC in both in vitro and in vivo models of ischemia. 

Exposure to oxygen glucose depravation  (OGD) preconditioning stimulus resulted 

in a significant induction of Srxn1 and Hmox1 gene expression. This effect was also 

extended to include upregulation of the glutathione pathway genes expression in 

vitro (Bell et al., 2011b). Similar results were obtained when adult mice were 

subjected to transient occlusion of the middle cerebral artery (MCAO). Moreover, 

mild oxidative stress-induced Srxn1 and Hmox1 gene up-regulation in human 

embryonic stem cell (HESC)-derived astrocytes (Bell et al., 2011a). 

A recent study identified an Nrf2-independent mechanism for H2O2-induced 

astrocyte-dependent neuroprotection (Haskew-Layton et al., 2010). A unique 

enzymatic system was employed in this study to allow for the control of duration and 

level of intracellular H2O2 production in astrocytes. To that end, H2O2-producing 

enzyme (D-amino acid oxidase) was heterologously expressed in astrocytes that 

metabolizes an exogenous substrate (D-alanine) enabling regulated generation of 

H2O2. The controlled continuous sub-toxic H2O2 production in astrocytes rendered 

adjacent neurons resistant to an oxidative insult. However, they reported that the sub-

toxic doses of H2O2 fail to activate the Nrf2 pathway in astrocytes and trigger 

neuroprotection via a mechanism independent of Nrf2 and possibly involving the 

inhibition of protein tyrosine phosphatase (Haskew-Layton et al., 2010).  One 

potential explanation for the discrepant findings between the two studies is that H2O2 

doses greater than 30 µM were not explored in their study, because 100 µM H2O2 

was reported to be toxic to astrocytes as determined by 3-(4,5-Dimethylthiazol-2-yl)-
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2,5-diphenyltetrazolium (MTT) assay or by ethidium homodimer-1, a chemical 

which only stains the nuclei of dead cells (Haskew-Layton et al., 2011). However, 

the MTT assay measures cellular NADPH-reducing activity, which could drop in 

response to sub-toxic oxidative stress (due to the NADPH-dependent enzymatic 

H2O2 detoxification) resulting in overstated toxicity. In contrast, we observe no 

evidence of H2O2-induced toxicity at 100 µM H2O2 neither in astrocytes (Bell et al., 

2011a) nor in AC-neurons (Fig. 4.1D), as assessed by ATP assay and/or nuclear 

integrity. The discrepancies in the H2O2-induced toxicity results may be due to 

differences in the seeding density of the astrocyte cultures used. This observation 

was previously reported in rat neuronal and astrocytic primary cultures, whereby the 

degree of H2O2 toxicity/detoxification, at the same dose of H2O2, varied with cells 

seeding density (Dringen et al., 1999a; Song et al., 2004). 

 

Another possible reason for the disparities between the two studies lies in the Nrf2 

activity assay utilized by Haskew-Layton and co-workers, in which a luciferase 

reporter incorporating the ARE from the NQO1 promoter was employed. However, 

different AREs can have different Nrf2 dependencies for basal and/or inducible 

activity and unpublished data from our laboratory revealed a weak induction of Nqo1 

by 100 µM H2O2. Therefore the ARE promoter from NQO1 is not as sensitive as 

other ARE promoters and may not be a good indicator of Nrf2 response to H2O2. 

Regardless of the contradicting results, both studies confirm the importance of 

astrocytes in mediating neuroprotection. While our results emphasize the importance 

of astrocytic Nrf2-dependent pathway as a mediator of neuroprotective responses to 

oxidative stress, it is feasible that astrocyte-dependent neuroprotection against 

oxidative stress involves both Nrf2-dependent and Nrf2-indepedent signalling 

pathways. However, the contribution of one pathway or the other could depend on 

the developmental stage or the magnitude or nature of the oxidative insult (Bell et al., 

2011a; Bell et al., 2011b). 
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4.3.2. Mild oxidative stress activation of Nrf2 is astrocyte specific  

Previous studies aimed to determine the site of Nrf2 activation, in which genetic or 

pharmacological approaches were utilized to activate Nrf2, have generated 

contrasting results. While some studies are in support of the astrocyte-specific 

activation of the Nrf2/ARE pathway (Ahlgren-Beckendorf et al., 1999; Murphy et 

al., 2001; Kraft et al., 2004), other studies documented functional Nrf2 pathway in 

neurons (Johnson et al., 2002; Kraft et al., 2007; Escartin et al., 2011). Discrepancies 

in this regard, could be due to many factors such as the differences in the detection 

methods for markers of Nrf2 activation, the developmental stage, the brain region 

under investigation and the nature and intensity of the stimuli. Despite the disparities 

in the results from these studies, they collectively don't establish the locus of 

endogenous Nrf2 activity in response to endogenous signals such as oxidative stress. 

This study provides, for the first time, in vitro evidence of the locus of endogenous 

Nrf2 activation by intrinsic stimulus such as mild oxidative stress. I have observed 

no induction in Nrf2-dependent gene expression in cultures devoid from astrocytes 

neither with H2O2 nor with tBHQ treatments (Fig. 4.3). On the other hand, astrocytes 

displayed a very robust gene expression induction in response to either treatments 

(Fig. 4.4). Although astrocytes are represented by a small population (~10%) in our 

AC-neurons, they account for the strong Nrf2 response to H2O2 or tBHQ. This 

observation was further confirmed through immunfluorescent analysis revealing an 

increased Hmox1 expression by H2O2 or tBHQ co-localized with GFAP-positive 

astrocytes but not with cells displaying neuronal morphology (Fig. 4.5).  

Previous studies have been focused on the role of astrocytes in rodent systems in 

mediating a neuroprotective response to Nrf2-activating stimuli, however, this 

response was recently shown to be relevant to human systems. A study by Gupta et 

al. demonstrated that HESC-derived astrocytes are capable of promoting the 

protection of HESC-derived neurons against oxidative insults and that their 

neuroprotective capacity can be greatly enhanced by treatment with the Nrf2 inducer 
1[2-Cyano-3,12-dioxool-eana-1,9(11)-dien-28-oyl] trifluoroethylamide (CDDOTFEA) 

(Gupta et al., 2012). Moreover, treatment of HESC-derived neurons with CDDOTFEA 

failed to induce Nrf2 target genes and more importantly elicited no significant 
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protective effect against oxidative insults. This study supports the notion that 

astrocytes are the locus of endogenous Nrf2 activation in rodent (Fig 4.3-4.6) as well 

as in human systems  (Gupta et al., 2012). 

 

4.3.3. Nrf2 pathway is inactive in neurons 

Activation of ARE/Nrf2 pathway by tBHQ has been observed in neurons of mixed 

culture systems when in close proximity to astroytes  (Johnson et al., 2002). I 

therefore wanted to determine if neurons within AC-neuronal culture system could 

contribute to the strong Nrf2-dependent gene upregulation observed  following H2O2 

or tBHQ treatments, as a result of obligatory factors release from neighbouring 

astrocytes. Treatments with either H2O2 or tBHQ led to Hmox1 induction that was 

specific to GFAP-positive astrocytes, while it had no effect on Hmox1 expression 

pattern in the neuronal population in our cultures of AC-neurons (Fig. 4.5) and (Bell 

et al., 2011a). Moreover, AF-neurons failed to display an upregulation of Nrf2 target 

genes when treated with H2O2 or tBHQ (Fig. 4.3).  

Primary cultures derived from Keap1-/- mice or treated with (siRNA) directed against 

Keap1 display an increase in phase II mRNA levels as a result of constitutively 

active Nrf2 pathway (Satoh et al., 2009; Williamson et al., 2012). Consistent with the 

previous studies, Keap1 genetic ablation led to a significant induction of Nrf2-

dependet gene expression in both astrocytes and AC-neurons (Fig. 4.6). In contrast, 

knocking out Keap1 bore no effect on Nrf2 target genes expression in AF-neurons 

(Fig. 4.6). However, overexpression of Nrf2 in conjunction with eGFP revealed a co-

localization of Hmox1 staining to the GFP-positive neurons as seen by 

immunofluorence staining (Fig. 4.7). Similarly, Nrf2 overexpression in neurons 

induced endogenous Srxn1 staining (Soriano et al., 2008). This implies that 

ARE/Nrf2 pathway is functional in neurons and capable of driving ARE-gene 

transcription in the presence of adequate levels of Nrf2. Taken these data together, it  

 

is likely that lack of ARE/Nrf2 pathway activity is due to diminished Nrf2 

expression levels in neurons. In support of this notion, enriched glial cultures were 
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reported to express ~12 folds more of Nrf2 protein comparing to enriched neuronal 

cultures (Shih et al., 2003). In addition, unpublished data from our laboratory show 

significantly lower Nrf2 (Nfe2l2) mRNA expression in AF-neurons compared to AC-

neurons and astrocytes, while no difference was detected in the mRNA levels of 

Keap1. The loss of Nrf2 signalling in neurons could be a result of epigenetic 

regulation of Nrf2 expression. The basis for this are under investigation in our 

laboratory and not the focus of this thesis, however, I was interested in investigating 

the molecular events underlying the H2O2-mediated Nrf2 activation in astrocytes 

which I will address in the next chapter. 
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                                          Chapter 5 

 Mild oxidative stress activates the astrocytic Nrf2 pathway  

  via a Keap1-independent mechanism 
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5.1. Summary 

 In non-neural cells, the prevailing view has been that activation of Nrf2 by oxidative 

stress is achieved through allowing Nrf2 to evade Keap1-mediated suppression. This 

effect is attributed at least in part to chemical or oxidative modification of specific 

reactive cysteine residues of Keap1, which may result in conformational changes in 

the Keap1/Nrf2 complex and ultimately stabilization of Nrf2 (Dinkova-Kostova et 

al., 2005; Fourque et al., 2010). 

 Having established that mild oxidative stress induced by the application of sub-toxic 

doses of H2O2   stimulates the astrocytic Nrf2 pathway (Fig 4.2-4.5), I attempted in 

this study to investigate the molecular mechanism(s) underlying the H2O2-mediated 

activation of the astrocytic Nrf2. Given the well-defined role of Keap1 in regulating 

Nrf2 activity in response to oxidative or chemical stress, I sought to test the 

involvement of Keap1 in the activation of astrocytic Nrf2 following exposure to mild 

oxidative stress. Contrary to the established dogma, I found that mild oxidative stress 

induces the astrocytic Nrf2 pathway in a manner distinct from the classical Keap1 

antagonism employed by prototypical Nrf2 inducers. The mechanism was found to 

involve direct regulation of Nrf2's transactivation properties and can act additively to 

and independently of the classical Keap1-antagonism pathway. Furthermore, I show 

here that mild oxidative stress enhances Nrf2 transactivation activity specifically 

through its Neh5 transactivation domain and that this effect is mediated by a specific 

previously identified redox-sensitive cysteine residue within the Neh5 domain. These 

findings suggest that therapeutic manipulation of Nrf2 activity may be achievable 

even in astrocytes suffering oxidative stress.  
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5.2. Results  

Although I have shown in section 4.2.3-4.2.5 that Nrf2 is active only in astrocytes, 

all our experiments were performed in AC-neurons rather than astrocytes. The reason 

for this is that astrocytes when grown in isolation from neurons have been reported to 

display altered morphology and changes in specific genes expression. Previous 

studies revealed that astrocytes in vitro undergo morphological alteration from an 

epithelial cell-like (or polygonal) shape to a process-bearing shape, that is more 

characteristic of astrocytes in situ, when co-cultured with neurons (Matsutani and 

Yamamoto, 1997; Swanson et al., 1997). These morphological changes were also 

associated with changes in gene expression pattern of the astrocytic glutamate 

transporters such as the excitatory amino acid transporters (EAAT) (Matsutani and 

Yamamoto, 1997). 

 

5.2.1. Mild oxidative stress upregulates Nrf2-dependent gene expression even in 

the absence of Keap1  

Previously, I have shown that sub-toxic does of H2O2 upregulate Srxn1, Hmox1 and 

xCT expression specifically in astrocytes in an Nrf2-dependent manner (Fig. 4.2-4.5), 

however, the mechanism behind the upregulation is not clear. Studies of Nrf2 

regulation in non-neural cells suggest that oxidative stress induces Nrf2 activity 

through antagonizing Keap1-dependent suppression (Dinkova-Kostova et al., 2005; 

Fourque et al., 2010). I therefore sought to determine whether H2O2-mediated Nrf2 

activation occurs through the antagonism of Keap1. To test this, WT and Keap1-/- 

AC-neurons were treated with either a range of sub-toxic doses of H2O2 or tBHQ, 

which exemplifies a Keap1-dependent mechanism of Nrf2 activation (Zhang and 

Hannink, 2003), for 6 h after which RNA was harvested and Nrf2 target gene 

expression was evaluated. Real-time qPCR analysis revealed a significant induction 

of Nrf2 target genes expression following H2O2 regardless of Keap1 status (Fig. 

5.1A, C, E). Consistent with previous studies (Wakabayashi et al., 2003; Satoh et al., 
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2009; Gan et al., 2010), the absence of Keap1 elevated the basal expression of Nrf2 

target genes. Approximately  

 

three-fold increase in Srxn1 and xCT  basal expression was observed in Keap1-/- 

cultures (Fig 5.1 A, E). Given the important role of Nrf2 in controlling the basal 

expression of Hmox1, reflected by the dramatic decrease of Hmox1 basal expression 

in Nrf2-/- cultures (Fig 4.2 B), I predicted a large induction in Hmox1 basal levels in 

Keap1-/- cultures. To my surprise, the absence of Keap1 resulted in a modest yet 

significant increase in Hmox1 basal expression. The reason for this is not clear, 

however, one possible explanation is the contribution of other Nrf2-related factors in 

addition to Keap1 in the regulation of Hmox1 basal levels.  

Intriguingly, application of H2O2 produced further induction in Srxn1, xCT and 

Hmox1 genes expression in the absence of Keap1 (Fig. 5.1A, C, E), while the 

absence of Keap1 as predicted, abolished the tBHQ-mediated induction of Srxn1 and 

xCT expression (Fig 5.2 B, F). On the other hand, the absence of Keap1 didn't 

completely occlude the tBHQ-mediated induction of Hmox1 expression as a small 

yet significant increase was observed in Keap1-/- cultures (Fig. 5.2D). Although a 

number of studies have shown that tBHQ-mediated Nrf2 activation occurs through 

post-translational modification of Keap1 Cys 151 residue (Zhang and Hannink, 

2003; Zhang, 2006; Abiko et al., 2011), a recent study has demonstrated the 

contribution of calcium in the tBHQ-induced expression of HMOX1 in human 

hepatoma and colon carcinoma cell lines (Cheung et al., 2011). The reported 

involvement of calcium in the tBHQ-induced expression of HMOX1 could provide a 

possible explanation for the induction of Hmox1 expression observed in Keap1-/- 

cultures following the application of tBHQ (Fig. 5.2D). 
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Figure 5.1. Mild oxidative stress induces Nrf2-regulated gene expression in 
Keap1 deficient cultures. 
Gene expression was assessed using qPCR in AC-neurons derived from WT or 
Keap1-/- mice and stimulated as indicated for 6 h. Srxn1 mRNA levels in response to 
A) H2O2 or B) to tBHQ. Hmox1 mRNA levels in response to C) H2O2 or D) to 
tBHQ.  xCT mRNA levels in response to E) H2O2 or F) to tBHQ. (n=5-6), *p<0.05. 
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5.2.2. H2O2 and tBHQ induce Nrf2-dependent gene expression via separate 

mechanisms 

As another approach to confirm the existence of a Keap1-indepedent mechanism of 

H2O2-mediated Nrf2 activation, I explored the effect of combined treatment with 

tBHQ and H2O2 on Nrf2-dependent gene expression. Since tBHQ acts through 

antagonizing Keap1 (Fig. 5.1B, F) and (Zhang and Hannink, 2003; Zhang, 2006; 

Abiko et al., 2011), I hypothesized that H2O2 and tBHQ co-treatment would 

additively induce Nrf2 activity. To examine this, I co-applied 10 µM tBHQ and 100 

µM H2O2 to AC- neurons, then harvested RNA for qPCR analysis 6 h later. As 

revealed by the qPCR analysis of Srxn1 and Hmox1 mRNA levels, tBHQ and H2O2 

combined treatment produced a significant upregulation of Nrf2 target genes 

expression greater than that achieved by the either treatment alone (Fig 5.2).  

As a further test of the Keap1-independent mechanism of H2O2-mediated Nrf2 

activation, I utilized a firefly luciferase reporter fused to the human Neh2 domain of 

Nrf2, responsible for Keap1-dependent Nrf2 degradation, referred to here and after 

as (Neh2-luc). This Neh2-luc reporter system is a recently developed tool that allows 

for real-time monitoring of the direct effect of a particular compound on Nrf2 

stability (Smirnova et al., 2011). The principle behind it is that under control 

conditions, Neh2-luc should undergo Keap1-mediated proteasomal degradation, 

which would result in a low luciferase activity. However, treatments with Nrf2 

activators such as tBHQ, which disrupt the Keap1-mediated Nrf2 degradation 

(Zhang and Hannink, 2003), would stabilize the Neh2-luc leading to a measurable 

increase in luciferase activity as illustrated in (Fig. 5.3A) (Smirnova et al., 2011). 

One advantage of this system, is that it would allow discrimination between Keap1-

dependent and -independent mechanism of action of Nrf2 inducers. I hypothesized 

that if H2O2 activates Nrf2 via a mechanism distinct from tBHQ, I then should 

observe no induction in Neh2-luc activity. To examine this, AC-neurons were 

transiently transfected on DIV02, using the astrocyte transfection protocol, with 

Neh2-luc reporter plasmid along with pTK-renilla normalization vector. Then on 

DIV08 the transfected cells were exposed to either tBHQ or H2O2 for 8 h prior to 
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measurements of luciferase activity. Parallel experiments were performed with cells 

transfected with a luciferase reporter (not fused to Neh2) along with pTK-renilla 

normalization vector, where they serve as a negative control. Consistent with the 

previous report (Smirnova et al., 2011), tBHQ stimulated Neh2-luc activity (Fig. 

5.3B), while, as predicted no change was observed in Neh2-luc activity following 

H2O2 treatments (Fig. 5.3B). Taken together, these findings suggest that mild 

oxidative stress activates the Nrf2 pathway via mechanism(s) separate from the 

classical Keap1-antagonism mode of action employed by tBHQ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. H2O2 acts additively to the classical Keap1-dependent mechanism 
employed by tBHQ.  
Concomitant treatment of AC-neurons with 10µM tBHQ and 100 µM H2O2 for the 
indicated time followed by RNA isolation and qPCR analysis. A) Srxn1 gene 
expression. B) Hmox1 gene expression. (n=6), *p<0.05.  
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Figure 5.3. Neh2-luc responds to tBHQ-mediated activation but not H2O2. 
Transient transfection experiments were carried out on AC-neurons employing 
astrocyte transfection protocol. On DIV02, cells were transfected with Neh2-luc or 
luciferase only reporter plasmid along with pTK renilla transfection control. 6 days 
post transfection (DIV08) cells were treated with tBHQ or H2O2 at the indicated 
doses for 8 h before assessing luciferase reporter activity. Luciferase expression was 
normalized to Renilla control. (n=3),*p<0.05. 
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5.2.3. Inhibition of GSK-3β  potentiates the inductive effect of H2O2 on Hmox1 

gene expression but not Srxn1  

Apart from Keap1, GSK-3β was described as a negative regulator of Nrf2 promoting 

its nuclear exclusion and inactivation (Salazar et al., 2006; Rojo et al., 2008; Rada et 

al., 2011). However, under strong oxidative stress conditions, GSK-3β and Nrf2 are 

subject to biphasic regulation. Short-term exposure to oxidative stress activates Akt, 

which in turn leads to inhibitory phosphorylation of GSK-3β and eventually Nrf2 

nuclear translocation. On the other hand, long-term exposure results in GSK-3β 

activation and limits Nrf2 activity by expelling it from the nucleus (Salazar et al., 

2006; Rojo et al., 2008). I therefore hypothesized that if GSK-3β inhibition is the 

mechanism by which mild oxidative stress activates the Nrf2 pathway, then I should 

observe: 1) an increase in the basal expression of Nrf2 target genes, following 

treatment with GSK-3β inhibitor CT-99021, similar to that achieved following H2O2 

2) pre-treatment with CT-99021 would occlude H2O2 effect on Nrf2 target gene 

expression. To test this hypothesis, AC-neurons were treated for 6 h with H2O2 in the 

presence or absence of CT-99021. Then RNA was isolated and converted to cDNA 

for subsequent qPCR analysis. The data obtained from qPCR analysis revealed no 

significant change in Srxn1 or Hmox1 basal expression following the application of 

CT-99021 (Fig. 5.4). In addition, GSK-3β inhibition didn’t occlude the inductive 

effect of H2O2, as demonstrated by the significant upregulation of Srxn1 and Hmox1 

gene expression by H2O2 in the presence or absence of CT-99021. Co-treatment of 

H2O2 and CT-99021 results in a modest insignificant increase in Srxn1 mRNA 

expression (Fig. 5.4A). However, GSK-3β inhibition appears to potentiate the 

inductive effect of H2O2 on Hmox1 gene expression (Fig. 5.4B).The mechanism 

involved requires further studies, in which the effect of H2O2 on GSK-3β activity 

could be evaluated.  
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Figure 5.4. Inhibition of GSK-3β  potentiates the inductive effect of H2O2 on 
Hmox1 gene expression but not Srxn1  
AC-neurons were pre-treated with 2 µM CT-99021 for 1 h prior to treatment with 
100 µM H2O2 and then 6 h later RNA was isolated for subsequent qPCR analysis. A) 
Srxn1 mRNA expression. B) Hmox1 mRNA expression. (n=4), *p<0.05. 
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5.2.4. Mild oxidative stress enhances Nrf2 transactivation activity via the Neh5 

domain 

I next sought to explore if H2O2 elicits its activating effect through direct regulation 

of Nrf2 transactivation potential. To address this, a firefly luciferase reporter gene, 

linked to four Gal4 sites (Gal4-luc), was used to evaluate transcriptional activation 

by Nrf2 or by either of its two transactivation domains Neh4 and Neh5 following 

H2O2 application (Fig. 5.5A). For this purpose, I utilized constructs of Gal4-DNA 

binding domain (GBD) -Nrf2 functional domain fusion proteins previously generated 

by Katoh and co-workers (Katoh et al., 2001), in which GBD-Nrf2 contains the full 

length protein, GBD-Neh (2-4) contains both Neh2 and Neh4 domains (1-156 amino 

acids) and GBD-Neh5 contains the Neh5 domain  (153-227 amino acids) of Nrf2  

(Fig. 5.5A) (Katoh et al., 2001). GBD-Nrf2 fusion proteins mediate a strong 

activation of the reporter gene, compared to the GBD alone (Fig. 5.5B). Remarkably, 

H2O2 stimulation generated a significant induction in GBD-Nrf2 full length and 

GBD-Neh5 mediated luciferase reporter activity (Fig. 5.5B).  Moreover, the H2O2-

induced transactivation activity seems to be attributable to the Neh5 transactivation 

domain, as demonstrated by the lack of reporter activity response to H2O2 

stimulation when using GBD-Neh (2-4).  These results demonstrate that mild 

oxidative stress-mediated Nrf2 activation involves a direct regulation of Nrf2 

transactivation property.  
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Figure 5.5. Mild oxidative stress directly regulates Nrf2 transcriptional activity 
through the Neh5 domain.  
A) Schematic representation of the GBD-Nrf2 fusion effector constructs and Gal4-
luc reporter construct. B) On DIV02 AC-neurons were co-transfected with Gal4-luc 
plasmid and either of the Nrf2-GBD fusion plasmids indicated above. PTK-renilla 
was included in all transfections to normalize for transfection efficiency. On DIV08, 
cells were exposed to H2O2 for 8 h prior to analysis of firefly and renilla luciferase 
activities. (n=3-9), *p<0.05 significantly different from GBD-Nrf2 control. 
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5.2.5. Neh5 sensitivity to H2O2 is mediated by the Cys-191 residue  

I have previously demonstrated the redox reactivity of GBD-Neh5 to H2O2 (Fig. 5.5 

B), however, the molecular mechanism responsible for this response is not clear. 

Cysteine residues have a well-defined role in sensing and transducing cellular redox 

status (Barford, 2004) and have been found to be the primary targets for H2O2 

oxidizing action (Reth, 2002). In addition, Neh5 harbours a reactive cysteine residue 

that has been reported to mediate the increased nuclear translocation and 

transactivation of Nrf2 in response to H2O2 treatment observed in HeLa cells (Li et 

al., 2006). I therefore introduced a Cys to Ala mutation at postion-191 (C191A) of 

Neh5 domain to examine whether this cysteine residue is required for the H2O2- 

induced Neh5 transactivation activity. While H2O2 significantly induced Gal4-luc 

activity mediated by wild type GBD-Neh5, the C191A mutation completely 

abolished the inductive effect of H2O2. Furthermore, mutant GBD-Neh5 (GBD-Neh5 

(C191A)) displayed a reduced basal transactivation activity compared to WT (GBD-

Neh5) emphasizing the key role of this cysteine residue in mediating basal and 

inducible Neh5 transactivational activity (Fig. 5.6A). To ensure that the effect of the 

mutation on Neh5 transactivity is not due to differential expression levels between 

the WT and the mutant plasmids, I transfected HEK-293 cells with either the GBD-

Neh5 or GBD-Neh5 (C191A) and harvested the protein 24 h post-transfection for 

subsequent western blot analysis. The GBD expression level was comparable 

between the WT and mutant constructs as revealed by densitometric analysis of the 

bands normalized to β-actin (Fig. 5.6 B, C). 
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Figure 5.6. C191A mutation attenuates the redox reactivity of GBD-Neh5 
domain.   
A) AC-neurons were transfected on DIV02 with GBD-Neh5 or its mutant version 
GBD-Neh5 (C191A) along with Gal4-luc reporter and pTK-renilla plasmid. 6 days 
later (DIV08), cells were treated with H2O2 for 8 h before performing the luciferase 
reporter gene assay. Luciferase reporter activity was normalized to Renilla control. 
B, C) GBD-Neh5 and GBD-Neh5(C191A) expression levels B) GBD-Neh5 or its 
C191A mutant was transfected into HEK-293 cells. At 24 h post transfection, protein 
was harvested and analysed for GBD expression and β-actin loading control, (n=3). 
C) Quantification of GBD protein expression normalized to β-actin. 
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5.3. Discussion 

 Contrary to the established dogma, I report here a mechanism by which mild 

oxidative stress triggers the astrocytic Nrf2, distinct from the classical Keap1 

antagonism pathway affected by small molecule Nrf2 inducers such as tBHQ. The 

mechanism involves direct regulation of Nrf2's transactivation properties, and can act 

additively to the classical tBHQ-induced pathway, suggesting that therapeutic 

manipulation of Nrf2 activity may be achievable even in astrocytes suffering 

oxidative stress. 

  

5.3.1. Mild oxidative stress activates the astrocytic Nrf2 in a Keap1-independent 

manner  

Prototypical activators of the Nrf2 pathway such as tBHQ and sulforaphane, induce 

the pathway via blocking Keap1-mediated Nrf2 ubiquitination and subsequent 

proteasomal degradation leading eventually to enhanced Nrf2 stability and activation 

of ARE-dependent gene transcription (Zhang, 2006). Herein I have presented a 

previously unrecognized mechanism for astrocytic Nrf2 activation by mild oxidative 

stress that is independent of the classical Keap1 antagonism pathway.  

In this study I found that mild oxidative stress activates the astrocytic Nrf2 

independently of Keap1. AC-neurons prepared from Keap1-/- displayed a significant 

induction in Nrf2-dependent gene expression when treated with H2O2 (Fig. 5.1). On 

the other hand, parallel experiments, in which cells were exposed to tBHQ, were 

used as a model for Keap1-dependent mechanism. Although previous studies have 

not explored the effect of knocking out Keap1 on tBHQ-mediated Nrf2 activation, 

they have identified a particular cysteine residue (C151) located in the BTB domain 

of Keap1, required for the activation of Nrf2-regulated transcription by tBHQ (Zhang 

and Hannink, 2003). In addition, a more recent report showed that C151 mutations 

could promote and accelerate Keap1 degradation upon tBHQ treatment (Kobayashi 

et al., 2006). As predicted Keap1 deletion substantially abrogated the ability of tBHQ 

to elevate Nrf2-dependent Srxn1 and xCT gene expression (Fig. 5.1B and F). While a 

modest yet significant tBHQ-mediated induction was observed in Hmox1 gene  
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expression even in the absence of Keap1 (Fig. 5.1D). This induction could be 

attributable to the calcium-regulated tBHQ activation of Nrf2. A recent study 

described the role of calcium in mediating tBHQ-induced HMOX1 expression, 

whereby chelation of calcium attenuated the enhanced binding of Nrf2 to its co-

activator CREB and to the ARE in the enhancer region of HMOX1 induced by tBHQ 

in human hepatoma and colon carcinoma cell lines (Cheung et al., 2011). 

  

In light of the qPCR data obtained from WT and Keap1-/- cultures exposed to either 

tBHQ or H2O2  revealing a Keap1-dependent and -independent mechanisms of action 

respectively (Fig. 5.1), I speculated that concomitant treatment with H2O2 and tBHQ 

would additively induce Nrf2 target genes expression. Indeed, the combined 

treatment resulted in an upregulation of Srxn1 and Hmox1 gene expression greater 

than that elicited by each treatment individually (Fig. 5.2) confirming the Keap1- 

independent mechanism of Nrf2 activation by mild oxidative stress. 

  

Further evidence for the Keap1-independent mechanism was obtained using the 

Neh2-luc reporter system. Treatment with tBHQ led to a measurable increase in 

Neh2-luc activity (Fig. 5.3B). This observation is consistent with the data generated 

by Smirnova and co-workers showing an induction in Neh2-luc activity in human 

neuroblastoma cells exposed to tBHQ (Smirnova et al., 2011) and in line with the 

widely accepted model of Nrf2 activation by tBHQ (Zhang, 2006). On the other 

hand, no induction in Neh2-luc activity was observed with H2O2 (Fig. 5.3B). These 

data correlate well with the results presented in (Fig. 5.1 and 5.2) and together 

strongly suggest that mild oxidative stress activates Nrf2 in astrocytes via a Keap1-

independent mechanism, however, it doesn’t rule out some dependence on Keap1 as 

suggested by the drop in H2O2-mediated induction of Nrf2 target genes in Keap1-/- 

cultures compared to WT (Fig. 5.1). 
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It is noteworthy, that in zebrafish embryos H2O2 induced Nrf2-dependent glutathione 

S-transferase gene (gstp1) expression but failed to cancel Keap1-mediated 

suppression of Nrf2. Unlike other species, zebrafish have two types of Keap1, 

Keap1a and Keap1b with the latter sharing higher identities (73-81%) to the 

functional domains of the mouse Keap1 protein (Li et al., 2008). H2O2 failed to 

cancel Nrf2 suppression mediated by either Keap1 proteins. This was thought to be 

due to the lack of factors additional to Nrf2 and Keap1 necessary for sensing H2O2, 

which are down regulated or non-functional at the embryonic stage (Kobayashi et al., 

2009). However, it’s plausible that the failure to alleviate Keap1 suppression by 

H2O2 is not due to Keap1 impaired sensing for H2O2 but rather due to H2O2 Keap1-

independent mechanism of action.  

 

Keap1 function as a redox sensor is mainly attributed to its possession of reactive 

cysteine, which could be subject to oxidation by H2O2 residues (Zhang and Hannink, 

2003; Holland et al., 2008; Fourquet et al., 2010). H2O2 has been shown to induce 

chemical modification to specific cysteine residues in Keap1. Two types of disulfide 

bonds could be formed upon Keap1 oxidation by various oxidants including H2O2; 1) 

an intermolecular, bridging two Keap1 monomers at Cys151, 2) an intramolecular 

disulfide bond, linking Cys 226 and Cys 613. Fourquet and co-workers reported a 

parallel between Keap1 oxidation and Nrf2 stabilization in HeLa cells exposed to 

H2O2 and suggested a cause-and-effect relationship between the two phenomena. In 

their study, H2O2 induced a transient stabilization of Nrf2 coinciding with Keap1 

oxidation. However, this effect was very short lived lasting for not more than 20 

mins and the role of Keap1 in H2O2-induced Nrf2 stability was not confirmed 

through Keap1 knock out or knock down approaches (Fourquet et al., 2010). 

Nevertheless, its is conceivable that the initial response to H2O2 could be through 

Keap1 requiring pathway which then switches to an alternative Keap1-independent 

pathway.   
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Aside from Keap1, Nrf2 is subject to dual regulation by GSK-3β, whereby the kinase 

controls its subcellular distribution (Rojo et al., 2008) and degradation in a Keap1-

independent manner (Rada et al., 2011). The data presented here (Fig. 5.4A and B) 

shows that GSK-3β pharmacological inhibition doesn’t attenuate the inductive effect 

of H2O2 on Srxn1 or Hmox1 gene expression. However, it suggests that GSK-3β 

inhibition could potentiate the inductive effect of H2O2 on Hmox1 expression as 

demonstrated by the further induction in gene expression levels beyond that achieved 

with H2O2 alone (Fig 5.4B). This potentiating effect was observed in Hmox1 gene 

expression but not Srxn1 (Fig 5.4A) and further investigation is required to decipher 

the underlying mechanism and whether H2O2 influences the activity of GSK-3β.  

 

5.3.2. Mild oxidative stress enhances Nrf2 transactivation activity  

 In the present study I have demonstrated that mild oxidative stress activates the Nrf2 

pathway in astrocytes via a mechanism independent of the classical Keap1 

antagonism pathway employed by Nrf2 small molecule inducers such as tBHQ. The 

mechanism involves a direct regulation of Nrf2 transactivation activity. H2O2-

induced activation of the ARE promoter has been previously reported in non-neural 

cells. For instance in cardiomyocytes, exposure to mild doses of H2O2 resulted in an 

increase of ARE-luc reporter activity in an Nrf2-dependent manner (Purdom-

Dickinson et al., 2007). Moreover, treatment with H2O2 induced Nrf2-mediated 

ARE-luc activity in HeLa cells (Li et al., 2006).  

    

In the present study, I utilized the GBD-Nrf2 chimera constructs and Gal4-luc 

reporter co-transfection system (Fig. 5.5A) (Katoh et al., 2001) to analyse 

transactivation activity of Nrf2 and both its transactivation domains Neh4 and Neh5 

individually in response to H2O2 stimulation. Interestingly, H2O2 triggered a strong 

GBD-Nrf2 mediated Gal4-dependent luciferase activity (Fig. 5.5B). The data also 

indicated that the H2O2-mediated increase of GBD-Nrf2 transactivation activity is 

attributed to Neh5 domain but not Neh4, since GBD-Neh5 had displayed similar 

levels of H2O2-induced activity compared to GBD-Nrf2 whereas GBD-Neh (2-4) 

showed no response to H2O2 stimulations (Fig. 5.5B).  
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Many proteins including transcription factors such as p53, Jun and Fos are subject to 

redox regulation occurring through particular highly conserved cysteine residues 

(Barford, 2004; Sun and Oberley, 1996).  However the H2O2-induced oxidation of 

these transcription factors can either up- or down regulate their transcriptional 

activity (Reth, 2002). In HeLa cells, Li et al. has identified a reactive cysteine 

residue at position 183 of the human Neh5 transactivation domain that is when 

mutated results in the attenuation of the H2O2-mediated Nrf2 translocation and 

transactivation   (Li et al., 2006). Consistent with the previous study, I have found 

that the substitution of Cys 191 for Ala in the mouse Neh5 domain not only ablates 

the induction of GBD-Neh5-mediated Gal4-luc activity following exposure to H2O2, 
but also significantly reduces Neh5 basal transactivation activity (Fig. 5.6A). The 

same mutation was shown to decrease the half life of Nrf2 when overexpressed in 

Nrf2 null mouse fibroblasts and was correlated with increased Keap1 binding (He 

and Ma, 2009). However, in my hands expression levels of Neh5 and its mutant 

version were comparable (Fig. 5.6B and C). The disparities between the two results 

could be due to differences in the cell types used. Finally, oxidative stress is a 

complex event and its control of the Nrf2 pathway is expected to be intricate 

involving regulation at different levels.  

 

 



	
   140	
  

 

 

 

 

 

 

 

 

 

 

                                    Chapter 6 

                           Concluding statement 

 
 

 

 

 

 

 

 

 

 

 

 



	
   141	
  

 

 
The research reported herein has shed light on some of the molecular mechanisms 

involved in the control of intrinsic antioxidant and neuroprotective pathways by 

synaptic NMDAR signalling and mild oxidative stress. I have presented here three 

key findings: 

	
  

• Foxo1 is a Foxo target gene and as a result, its expression is subject to a feed-

forward inhibition by synaptic NMDAR activity, which promotes Foxo3 

export from the nucleus. 

• Mild oxidative stress activates the Nrf2 antioxidant pathway in astrocytes but 

not neurons. 

• Mild oxidative stress activates the Nrf2 antioxidant pathway in a mechanism 

independent of Keap1, which involves the induction of Nrf2 transactivation 

activity via Cys 191 residue within the Neh5 domain. 

 

The finding that Foxo1 is a Foxo target gene, as demonstrated in sections (3.2.1-

3.2.3), indicates a feed-forward regulation mechanism that may serve to reinforce the 

effect of Foxo-inactivating or -activating signals such as synaptic activity or 

oxidative stress respectively, on Foxo1-target gene expression. This suggests that the 

protective effects of synaptic activity or neurotrophic factors may last longer than 

previously thought. In agreement with this finding, a study on FOXO regulation in  

human fibroblasts also demonstrated that FOXO1 is a FOXO target gene and that 

FOXO3 was a stronger activator of the FOXO1 promoter than FOXO1 itself 

(Essaghir et al, 2009), similar to our results in section 3.2.3. Moreover, Essaghir et 

al. identified the same proximal FOXO binding site (GTA AAC AA), which was 

required for the regulation by growth factors such as IGF-I and platelet-derived 

growth factors, and mediated a large portion of the observed FOXO responsiveness 

(Essaghir et al, 2009). They also found that FOXO1 and FOXO3 were associated to 

the FOXO1 gene promoter in HEK293T cells as well as fibroblasts, which raises the 

possibility that such an association may as well exist in neurons. Although I have  
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shown that Foxo1 is a Foxo target gene based on the results obtained from luciferase 

reporter assay experiments (see section 3.2.3), further studies should be carried out 

to: 1) confirm the luciferase assay results by looking into the effect of overexpressing 

Foxos on the mRNA and protein expression of endogenous Foxo1 2) determine 

whether the enhanced Foxo1 promoter activity is a result of direct or indirect 

regulatory effect of Foxos, which could be assessed by performing chromatin 

immunoprecipitation experiments 3) determine whether Foxo3 itself is a Foxo target 

gene.  

 

A large body of evidence shows that cell death is the most likely outcome of Foxos 

activation in neurons in response to various stresses including oxidative stress and 

trophic factor withdrawal (for review see sections 1.2.4 and 1.2.5). Moreover, 

increased Foxo1 activity was implicated in the pahtogenesis of two forms of familial 

PD; the autosomal dominant late onset leucine-rich repeat kinase 2 (LRRK2)-linked 

PD, in which LRRK2 has been reported to phosphorylate FOXO1 and enhance its 

transcriptoinal activity both in Drosophila and mammalian cells (Kanao et al., 2010), 

and in the autosomal recessive early onset PTEN-induced kinase 1 (PINK1)-linked 

PD, in which lack of Pink1 was shown to increase Foxo1 activity in MEF cells via 

inhibiting IGF-I-induced Foxo1 nuclear exclusion (Akundi et al., 2012). In addtion, a 

very recent microarray  study in the prefrontal cortex of PD and control brain 

samples revealed a significant increase in FOXO1 gene expression in PD samples 

compared to controls and identified a set of differentially expressed genes, which 

was enriched for genes regulated by FOXO1(Dumitriu et al., 2012). Therefore, the 

protective effects of Foxo inactivating signals such as neurotrophic factors and 

synaptic NMDAR activity are thought to be mediated at least in part through 

promoting Foxos export and the subsequent suppression of Foxo-mediated gene 

expression (Gan et al., 2005; Maiese et al., 2007; Soriano et al., 2006; Papadia et al., 

2008; Martel et al., 2009; Al-Mubarak et al, 2009).  
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Finally, in light of the data presented here and in previous studies by our group 

(Soriano et al., 2006; Papadia et al., 2008; Martel et al., 2009), it is conceivable that 

the activity-dependent suppression of Foxos could confer neuroprotection by fighting 

oxidative stress on two fronts: 1) boosting antioxidant defenses through the 

inhibition of Foxo-target gene, Txnip (Papadia et al., 2008) and 2) blocking the Foxo-

mediated pro-apoptotic signalling (Fig. 6.1). 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Mechanisms by which activity-dependent suppression of Foxos could 
combat oxidative stress. 
This simplified diagram, adapted from (Hardingham and Bading, 2010), illustrates 
how synaptic activity-dependent suppression of Foxos could promote 
neuroprotection thorough turning off Foxo pro-apoptotic target genes including 
Foxo1 itself and the thioredoxin antioxidant system inhibitor, Txnip. For further 
review on the mechanism of Foxo3 activation by oxidative stress see David-Dávila 
and Aleman, 2005. (FBS) Foxo binding sequence. 
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Despite the well-established role of oxidative stress in the etiology of neurological 

disorders, antioxidant intervention based on the administration of free radical 

scavengers and spin-traps have met with limited success in clinical trials (Kamat et 

al., 2008). This could be due to various factors including failure to maintain the drug 

in the brain at levels sufficient to neutralize ROS as and when they appear. However, 

enhancing the activity of intrinsic antioxidant pathways such as the Nrf2 is an 

alternative antioxidant approach. Emerging evidence has shown that genetic or 

pharmacological activation of Nrf2 in astrocytes confers neuroprotection against 

oxidative stress in cell and animal models of neurodegeneration (for review see 

section 1.6). In line with this, I have demonstrated in sections 4.2.2-4.2.5, that the 

endogenous Nrf2 is activated by physiologically relevant stimulus such as mild 

oxidative stress in an astrocyte-specific manner. The responsiveness of endogenous 

Nrf2 to mild oxidative stress was recently shown by our group to contribute to the 

neuroprotective effect of ischemic preconditioning in vitro and in vivo (Bell et al., 

2011a; Bell et al., 2011b). However, whether human astrocytes are capable of 

mediating a neuroprotective response to Nrf2 activating-stimuli, was addressed in a 

recent study by Gupta et al., in which HESC-derived astrocytes were shown to 

promote survival of HESC-derived neurons following oxidative injury and that their 

neuroprotective capacity can be greatly enhanced by treatment with the Nrf2 inducer 
CDDOTFEA. This neuroprotective effect was restricted to astrocytes as HESC-derived 

neurons fail to respond to CDDOTFEA either in terms of Nrf2 activation or by 

conferring neuroprotection (Gupta et al., 2012). This study is consistent with the 

results from rodent cultures (refer to section 4.2.3) and (Bell et al, 2011a) showing 

that astrocytes represent the major locus of Nrf2 activation, triggered by small 

molecules and mild oxidative stress. Moreover, the loss of Nrf2 signalling in neurons 

could be a result of epigenetic regulation of Nrf2 expression, which is currently 

under investigation in our laboratory 

 

Nrf2 activation by oxidative stress/Nrf2 inducers in non-neural cells such as HeLa 

and NIH3T3 is believed to occur through Keap1 antagonism (Itoh et al., 1999: Zhang 

and Hannink, 2003; Fourquet et al., 2010). In the study on Nrf2 stabilization in  
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NIH3T3 cells, Keap1 C151 residue was found to be uniquely required for inhibition 

of Keap1-dependent degradation of Nrf2 by sulforaphane and tBHQ-induced 

oxidative stress (Zhang and Hannink, 2003). However, the involvement of oxidative 

stress in the tBHQ-induced Nrf2 activation is controversial. While tBHQ was shown 

to lead to ROS formation, in human hepatoma cells (Pinkus et al., 1996), activation 

of the ARE by tBHQ in human neuroblastoma cells (Lee et al., 2001) or in primary 

cortical cultures derived from ARE-hPAP reporter mice (Johnson et al., 2002) was 

independent of oxidative stress (for review see section 4.2.1). Therefore, it is 

important to utilize an accurate model of oxidative stress when investigating the 

mechanism of Nrf2 regulation in response to oxidative stress. In another study, 

where H2O2 was utilized to model oxidative stress in HeLa cells, a transient 

stabilization of Nrf2 protein coinciding with the oxidation of multiple cysteine 

residues on Keap1 was observed suggesting a cause-and-effect relationship between 

the two phenomena (Fourquet et al., 2010). However, this effect was very short lived 

lasting for not more than 20 mins and the role of Keap1 in H2O2-induced Nrf2 

stability was not confirmed through either Keap1 knock out or knock down 

approaches or through immunoprecipitation experiments. 

 

Contrary to the established dogma, this study provided evidence, presented in section 

5.2, suggesting that oxidative stress activates astrocytic Nrf2 via a mechanism 

independent of the classical Keap1 disinhibition pathway. The mechanism involves 

direct induction of Nrf2 transactivation activity via Cys191 within the Neh5 domain. 

This is in agreement with a previous study in HeLa cells, in which a reactive cysteine 

residue located in the human Neh5 domain was shown to attenuate the H2O2-

mediated Nrf2 translocation and transactivation (Li et al., 2006). However, some 

aspects of the Keap1-indepedenet mechanism reported in this thesis require further 

investigation these include: 1) assessing the influence of C191A on the oxidative 

stress-induced transactivational activity of the full length Nrf2 2) determining the 

effect of oxidative stress on the stability and subcellular distribution of astrocytic 

Nrf2.  
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Two important points could be inferred from identifying the existence of a Keap1-

independent mechanism of H2O2-mediated Nrf2 activation: 1) The fact that oxidative 

stress and Nrf2 inducers such as tBHQ activate Nrf2 via two independent 

mechanisms, suggests that Keap1 antagonism alone doesn’t saturate the Nrf2-driven 

antioxidant defences and that there is potential for further enhancement of Nrf2 

activity in astrocytes suffering oxidative stress (Fig 6.2). 2) Although oxidative stress 

activates Nrf2 independent of cell type, the underlying mechanism could be cell 

type-specific. The concept of cell type-specific regulation of Nrf2 was also observed 

in the context of kinase dependence of Nrf2 activation, whereby PI3K inhibition was 

shown to attenuate tBHQ-mediated ARE activation in IMR-32 (Lee et al., 2001) 

cells but not in HepG2 cells (Zipp and Aktas, 2006). Understanding the cell type-

specific mechanisms of Nrf2 activation may be valuable in designing therapies 

aimed at cell type-specific Nrf2 activation. 

 

 

 

 

 

 

 

 

 

	
  

Figure 6.2. Nrf2 inducers could further enhance Nrf2 activity in astrocytes 
suffering oxidative stress. 
This diagram illustrates that oxidative stress activates the Nrf2 pathway in astrocytes 
independently of the classical Keap1 antagonism previously reported in non-neural 
cells. The two independent mechanism of Nrf2 activation by oxidative stress and 
Nrf2 small molecule inducers such as tBHQ, suggest that Nrf2 small molecule 
inducers could further enhance Nrf2 activity even when astrocytes are suffering 
oxidative stress.    
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In summary, these results advance our knowledge of the mechanism(s) underlying 

the control of endogenous antioxidant and anti-apoptotic pathways by mild oxidative 

stress or synaptic activity. Such knowledge could be of value for designing therapies 

involving the manipulation of intrinsic defenses.  
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